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Reading

Optional reading:

+ Angel 3.1,3.7-3.11
+ Angel, the rest of Chapter 3
+ Foley, et al, Chapter 5.1-5.5.

+ David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed.,
McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x; y; z’) =f(x y, 2).
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These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x, y), in the plane or p = (x, y;, 2)
in 3D space

X
* as column vectors |: :|

* asrow vectors
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Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:
x' a bjx
y'| L dly

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements g, b, ¢ d...

Identity

Suppose we choose a=d=1, b=c=0.

+ Gives the identity matrix:
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+ Doesn't move the points at all
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Suppose we set b=c=0, but let a and ¢ take on any
positive value: Suppose we keep b=c=0, but let either a or d go
R . negative.
+ Gives a scaling matrix:
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Shear

Now let's leave a=d'=1 and experiment with b...

Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:

The matrix
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Effect on unit square, cont. Rotation
Observe: From our observations of the effect on the unit square,
. X it should be easy to write down a matrix for “rotation
¢ Origin invariant under M about the origin”:
* M can be determined just by knowing how the ,
corners (1,0) and (0,1) are mapped '
* g and d give x-and y-scaling
¢ b and ¢ give x- and y-shearing 1
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

+ Scaling

+ Rotation

+ Reflection
+ Shearing

Q: What important operation does that leave out?
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

X
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Adding the third “w"” component puts us in
homogenous coordinates.

And then transform with a 3 x 3 matrix:

X' x| [1 0 t,x x rtx
y =T y|=[0 1 t,|ly| = |Y tty
w' 1 0 0 1|1 |

y b

.. gives translation!
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Anatomy of an affine matrix Rotation about arbitrary points
Until now, we have only considered rotation about the
The addition of translation to linear origin. T Lt) ) .
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Points and vectors

3)
b Vectors have an additional coordinate of w= 0. Thus, a

A
e change of origin has no effect on vectors.
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D
ones.

For example, scaling:
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Translation in 3D Rotation in 3D (cont’d)
t
These are the rotations about the canonical axes:
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Shearing in 3D

Shearing is also more complicated. Here is one
example:
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We call this a shear with respect to the x-z plane.
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Properties of affine transformations

Here are some useful properties of affine
transformations:

¢ Lines map to lines
+ Parallel lines remain parallel
« (when transforming from N dimensions to N dimensions)
+ Midpoints map to midpoints (in fact, ratios are
always preserved)
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ffine transformations in OpenGL

lef(s,, sy, S;)
scale by (s, s,/ s,)

postmultiplication of the modelview matrix.

M <~ Ms
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Summary

What to take away from this lecture:

+ All the names in boldface.

+ How points and transformations are represented.
+ How to compute lengths, dot products, and cross
products of vectors, and what their geometrical
meanings are.

What all the elements of a 2 x 2 transformation
matrix do and how these generalize to 3 x 3
transformations.

*

+ What homogeneous coordinates are and how
they work for affine transformations.

+ How to concatenate transformations.

+ The mathematical properties of affine
transformations.
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