
ANIMATOR
HELP SESSION



ANIMATOR

OUTLINE

▸ Application interface 

▸ Project requirements 
▸ Curves: Bezier, B-splines, Catmull-roms 

▸ Particle system (w/ forces + collisions) 

▸ Artifact tips!



ANIMATOR

GETTING STARTED

▸ Merge the new Animator files into your Modeler repo 
▸ git pull upstream master 

▸ Note: if you added EC lights, you’ll need to modify GLRenderer 

▸ Animation tab in the bottom window 
▸ Left: Keyable properties for the selected object 

▸ Right: Graph window 

▸ Bottom: Time slider 

▸ Interface represented by AnimationWidget - add extra UI 
here



CURVES

CURVES



CURVES

CURVE EVALUATOR

▸ Implement the evaluateCurve function for each curve 
▸ ctrl_pts - a collection of control points that the user specifies in 

the graph editor 

▸ animation_length - max time, in seconds, that the curve is 
defined (i.e., the current “movie length”) 

▸ wrap - a flag indicating whether curve should be wrapped (can be 
added to the required curves for EC) 

▸ Use the LinearCurveEvaluator code as an example



CURVES

REQUIRED CURVES

▸ Bezier 
▸ Can use linear interpolation when there are not enough control points (< 4 

for a set) 

▸ Base requirement: sample u at regular intervals for 0 <= u <= 1 

▸ EC: Adaptive subdivision 

▸ Catmull-Rom 
▸ Interpolate endpoints (double them) 

▸ Make sure your curve is a function!! 

▸ B-Spline 
▸ Interpolate endpoints (triple them)



CURVES

HOW IT WORKS

▸ Control points are sorted for you 

▸ Your evaluated control points will  
also be sorted, so… 
▸ They must be a function! x should not decrease. 

▸ Evaluation function draws line segments between each of 
your evaluated points to create a smooth curve 
▸ Use control points to calculate your evaluated points which draw your 

curve - should always extend from time 0 to animation_length 

▸ How might you calculate evaluated points so your curve wraps?

Bad!



PARTICLE SYSTEMS



PARTICLE SYSTEMS

REQUIREMENTS

▸ Use Euler’s method to update position/velocity (see lecture 
notes) 

▸ 2 distinct forces 
▸ Calculate using different equations (ex. gravity and drag are distinct 

because gravity eq is of form f=ma, whereas drag is defined in terms of 
a drag coefficient and velocity) 

▸ Collision detection with sphere and plane 
▸ Use the restitution constant given by UI slider 

▸ Should behave properly when parented within your hierarchy



PARTICLE SYSTEMS

PARTICLESYSTEM CLASS

▸ Skeleton provides rough outline - fill in the REQUIREMENT 
sections to properly run and update the simulation 

▸ Should have pointers to all particles and a marching variable 
(time_to_emit_) 

▸ Suggestion: 
▸ Particle class - use inheritance if you plan on making multiple types of 

simulations 

▸ Force class - perhaps a generic Force class and a variety of distinct forces 
that inherit from it 

▸ It’s also possible to model collisions as forces



PARTICLE SYSTEMS

MAKE CALCULATIONS IN WORLD SPACE!

▸ If you spawn your particles from a node in your hierarchy 
that isn’t the root, it should still behave correctly 

▸ Find the world coordinates for your particles - not local 
▸ Why? Ex. If we apply gravity in the local coordinates of your particle 

system, then the force in the -y direction is dependent on the 
orientation of that node, not the -y of the world 

▸ Apply the model view matrix (i.e. model_matrix_) to your position, 
velocity, etc. vectors 

▸ Do the same with your collision forces



BELLS AND WHISTLES

NOW MAKE IT EVEN COOLER

▸ Curves 
▸ Tension control for Catmull Rom 

▸ Allow control points to have (or not have) C0, C1, C2 continuity 

▸ Curve wrapping (UI provided already) 

▸ Particles 
▸ Cloth simulation 

▸ Flocking 

▸ Billboarding 
▸ And transparent textures -> Fire, snow, leaves 

▸ Baking 
▸ Improves performance for complicated simulations with many particles



LIGHTS CAMERA ACTION!

TIPS FOR GOOD 
ARTIFACTS



ARTIFACTS

HAVE A PLAN

▸ This artifact takes more time than the others - we give you a week 

▸ Keep it simple, have realistic goals. If you finish early, go back and 
enhance 

▸ Sketch out storyboards and key poses/frames before implementing 
▸ Much easier to iterate on paper than in the animator program 

▸ Complicated != better. Well animated simple models are more 
entertaining than poorly animated complicated models 

▸ Read John Lasseter’s article on animation principles!! 
https://courses.cs.washington.edu/courses/cse457/15sp/projects/
animator/linkedItems/lasseter.pdf

https://courses.cs.washington.edu/courses/cse457/15sp/projects/animator/linkedItems/lasseter.pdf


ARTIFACTS

TIPS FOR YOUR MODELS

▸ You may update or add more models as you like 

▸ Many modeler artifacts were not properly “rigged” 
▸ Fix this now or else you won’t be able to animate 

▸ Ex. body parts have joints. If it bends, use either a sphere node or an empty node. 

▸ Translate the child to where you’d like it. Now when you rotate the parent (joint), 
your child node pivots correctly 

▸ A blinn-phong shader with texture mapping can add a lot, and is 
fairly easy to implement 
▸ Look at the provided texture.frag and texture.vert as reference 

▸ Find or make your own textures by using checkers.png as a reference for how the 
texture is mapped on your 3D objects (and then use Paint, GIMP, Photoshop, etc.)



ARTIFACTS

CHOICE OF CURVES

▸ Catmull-Rom is usually the preferred curve choice 
▸ But unless your project supports the option to add C1 discontinuity 

at will, you might find yourself fighting the Catmull-Rom to create 
pauses and control the timing 

▸ Bezier spline works well for things like animating a bouncing ball



ARTIFACTS

IMPORTANT COMPOSITIONAL COMPONENTS

▸ Timing 
▸ Consider timing and shot planning before getting specific about joint rotations or positions 

▸ Total length MUST be < 60sec. We recommend 24 or 30 fps. 

▸ SFX + Music 
▸ Greatly enhances cohesion of your artifact 

▸ If your idea includes a theme or stylization, very effective to time your animation with 
events in the theme music 

▸ Lighting 
▸ Like sound, super important compositionally - can signal story and mood 

▸ Camera Angle 
▸ Changing perspective between two shots or panning/zooming camera can add depth 

▸ Do not go overboard! And remember the 180 degree rule.



ARTIFACTS

PUTTING IT TOGETHER

▸ Make sure you keep your original model .yaml file separate 

▸ We recommend breaking up your intended artifact into shorter clips or 
“shots” and combining them in the end 
▸ Easier to split up work 

▸ Can incrementally complete your artifact 

▸ Save a new .yaml file for each shot, and build off the base of your original model (or 
from your last shot) 

▸ SaveAs often - there are no undos 

▸ Blender is installed on the labs and we provide a tutorial 
▸ Adobe After Effects and Premiere can also composite your frames into a movie - and 

much more easily too 

▸ < 60s, and must be H.264 mp4 format



GOOD LUCK
THE END


