
1

Shadow Mapping

Edward Zhang & Brian Curless
CSE 457

Autumn 2017



2

Shadows

What does it mean for a point to be in shadow, relative 
to some light?



3

Shadows

What does it mean for a point to be in shadow, relative 
to some light?

Assuming point lights,

A point is in shadow if the ray from the point to the 
light (along L), intersects the scene.

Why is this hard to do in a shader?



4

Shadows

What does it mean for a point to be in shadow, relative 
to some light?

Alternatively…

A point is unshadowed if it is the closest surface to the 
light along -L, so…

A point is in shadow if it is farther from the light than 
that closest surface along -L



5

Shadows

A point is in shadow if it is farther from the light than 
the closest surface along the ray

For directional lights, pick a plane perpendicular to L, 
but outside the scene bounds, as your source



6

Parameterizing shadow rays

A ray is parameterized by P(t) = O + vt, t > 0

How many degrees of freedom does this have in 3D 
(i.e. how many numbers uniquely determine a ray)?

How many degrees of freedom are there for a shadow 
ray from a point light?

How many degrees of freedom are there for a shadow 
ray from a directional light?



7

Precomputing shadow rays

A shadow map is a 2D lookup table containing the 
distance to the closest scene point along each possible 
shadow ray

Point Lights: Discretize by angles (φ,θ)

Directional Lights: Discretize by coordinates (x,y) of 
point on perpendicular plane



8

Shading with Shadows

Each shader gets one lookup table (shadow map) for each 
shadow-casting light in the scene.

When shading point P, for each light source:

1. Compute light direction L and shadow ray R(t) = O - Lt

2. Compute distance t from light source to P

3. Look up ray R in the shadow map to get distance d

 If t > d point is shadowed
 Otherwise, point is unshadowed

If P is unshadowed, Aj
shadow = 1

If P is shadowed, Aj
shadow = 0



9

Computing Shadow Maps

How do we compute shadow maps?

For each ray in our lookup table, raycast into the scene 
and find the nearest surface

But raycasting is slow!

For each triangle, find which rays in the lookup table 
intersect the triangle (and only update the lookup table 
entry if the triangle is closer to the light than the 
current value)

This sounds familiar…



10

Computing Shadow Maps

To compute shadow maps, render the scene from the point of view of the light.

Unshadowed scene with one 
directional light

Scene rendered onto 
directional light plane

Depth map of scene from 
directional light plane

Shadowed Scene



11

Shadow Map Format

For point lights, our shadow map needs to cover the sphere of directions. A direct 
mapping of (φ,θ) is not ideal since there is a singularity at the poles, and not enough 
resolution at the equator.



12

Computing Shadow Maps

Instead, we use cubemaps: six square textures mapped to the faces of a cube

To look up a direction in a cubemap, you figure out which face the ray intersects, 
and then look up the appropriate texel in that face texture.

OpenGL does this for you – all you have to do is give it a ray direction!



13

Computing Shadow Maps

Before rendering the scene to the framebuffer,

For each light:

1. Get a texture to hold the shadow map

2. Bind the texture as the framebuffer

3. Compute appropriate projection and view matrices 
for the shadow map (x6 for cubemaps)

4. Render the scene as a depth map (x6 for 
cubemaps)

In Animator/Modeler, steps 1-3 are done for you (for 
point lights).

Your job is to write a shader that will output the 
distance to (rather than the shaded appearance of) the 
fragment being shaded.



14

Artifacts – “Shadow Acne”



15

Fix:

if (t > d) A_shadow = 0;

if (t > d + shadow_bias) A_shadow = 0;

Oops… t > d, even though we 
aren’t in shadow!

Artifacts – “Shadow Acne”

d
t

P



16

Artifacts – “Peter-Panning”



17

Artifacts – “Peter-Panning”

Peter Panning happens when the shadow bias is too 
big.

Observation: An occluded shadow ray passes through 
the surface of the occluder twice

Fix: Render shadowmaps using backfaces, not 
frontfaces. No shadow bias necessary!

But requires watertight geometry of some minimum 
thickness, and no intersecting objects


