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Reading

Optional reading:

+ Angel and Shreiner readings for “Parametric
Curves” lecture, with emphasis on 10.1.2,10.1.3,
10.1.5,10.6.2,10.7.3, 10.9.4.

* Marschner and Shirley, 2.5.

Further reading

* Bartels, Beatty, and Barsky. An /ntroduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.
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As with curves, we'll focus on parametric surfaces.




General sweep surfaces

The surface of revolution is a special case of a swept
surface.

Idea: Trace out surface S(u,v) by moving a profile
curve C(u) along a trajectory curve T(v).

More specifically:
¢ Suppose that C(u) lies in an (x,y,) coordinate
system with origin O,.

+ For every point along T(v), lay C(u) so that O,
coincides with T(v).

Orientation

The big issue:

+ How to orient C(u) as it moves along T(v)?

Here are two options:

1. Fixed (or static): Just translate O, along T(v).

S(u,v)

2. Moving. Use the Frenet frame of T(v).

¢ Allows smoothly varying orientation.
¢ Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve T(v), we want to attach a
smoothly varying coordinate system.
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To get a 3D coordinate system, we need 3
independent direction vectors.

Tangent: t(v)=normalize[T'(v)]
Binormal: b(v) =normalize[T'(v)xT"(v)]
Normal: n(v)=b(v)xt(v)

As we move along T(v), the Frenet frame (t,b,n) varies
smoothly.

Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of
the trajectory T(v):

¢ Put C(u) in the normal plane.

¢ Place O.on T(v).

¢ Align x, for C(u) with b.

¢ Align y_for C(u) with -n.

Normal plane

If T(v) is a circle, you get a surface of revolution exactly!




Degenerate frames

Let's look back at where we computed the coordinate
frames from curve derivatives:
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Where might these frames be ambiguous or
undetermined?
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Variations

Several variations are possible:

¢ Scale C(u) as it moves, possibly using length of
T(v) as a scale factor.

* Morph C(u) into some other curve C(u) as it
moves along T(v).
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Given a grid of control points V,-/-, forming a control net,
construct a surface S(u,v) by:

* treating rows of V (the matrix consisting of the V))
as control points for curves V(u),..., V,(u).

¢ treating V,(u),..., V,(u) as control points for a
curve parameterized by v.
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Which control points are interpolated by the surface?
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Polynomial form of Bézier surfaces

Recall that cubic Bézier curvescan be written in terms of the
Bernstein polynomials:

Q)= Vb, (u)
i=0
A tensor product Bézier surface can be written as:

S(u,v) :Z":il/,]b, ()b, (v)

i=0 j=0

In the previous slide, we constructed curves along u, and then
along v. This corresponds to re-grouping the terms like so:

S(u,v):i [iVyb, (u)] b;(v)

j=0 \i=0

But, we could have constructed them along v, then u:

S(u,v)= i [il/;/.b/. (V)J b, (u)

=0 \j=0

Tensor product B-spline surfaces

As with spline curves, we can piece together a
sequence of Bézier surfaces to make a spline surface. If
we enforce C? continuity and local control, we get B-
spline curves:

+ treat rows of B as control points to generate
Bézier control points in w.

* treat Bézier control points in v as B-spline
control points in v.

¢ treat B-spline control points in v to generate
Bézier control points in w.
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Another example:
Which B-spline control points are always interpolated
by the surface?
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NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS
surfaces.
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Trimmed NURBS surfaces

Sometimes, we want to have control over which parts

v

of a NURBS surface get drawn.

For example:

We can do this by trimming the v-vdomain.

+ Define a closed curve in the v-vdomain (a trim
curve)

+ Do not draw the surface points inside of this
curve.

It's really hard to maintain continuity in these regions,
especially while animating.
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Summary

What to take home:

+ How to construct swept surfaces from a profile
and trajectory curve:

- with afixed frame
« with a Frenet frame
+ How to construct tensor product Bézier surfaces

+ How to construct tensor product B-spline
surfaces
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