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Reading

Optional reading:

+ Angel and Shreiner readings for “Parametric
Curves” lecture, with emphasis on 10.1.2, 10.1.3,
10.1.5,10.6.2,10.7.3, 10.9.4.

¢ Marschner and Shirley, 2.5.

Further reading

+ Bartels, Beatty, and Barsky. An Introduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.



Mathematical surface representations

¢ Explicit z=f(x, y) (a.k.a., a”height field")
« what if the curve isn't a function, like a sphere?
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Isocontour from “marching squares” Isocontour from “marching cubes”
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¢ Parametric S(y, v)=(x(uy v), y(u v), z(u, v)) = ﬂ""

- For the sphere: % gé - oV
x(u, v) =r cos2nv sin tu ’ Y

y(u, v)=rsin2nv sin tu a

z(u, v)=r cosnu X
As with curves, we'll focus on parametric surfaces.



Constructing surfaces of revolution
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Given: A curve C(v) in the xy-plane:
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Let R, (&) be a rotation about the y-axis.

Find: A surface S(u,v) which is C(v) rotated
about the y-axis, where u,v € [0, 1].

Solution: @(@ C (\/3 R<C2”W \/\\ C (\/\



General sweep surfaces
The surface of revolution is a special case of a swept
surface.

|dea: Trace out surface S(u,v) by moving a profile
curve C(u) along a trajectory curve T(v).
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More specifically:

¢ Suppose that C(u) lies in an (x_y,) coordinate
system with origin O..

¢ For every point along T(v), lay C(u) so that O,
coincides with T(v).



Orientation

The big issue:

¢ How to orient C(u) as it moves along T(v) ?

Here are two options:

1. Fixed (or static): Just translate O, along 7(v) .

S(u,v)

2. Moving. Use the Frenet frame of 7(v).

+ Allows smoothly varying orientation.
¢ Permits surfaces of revolution, for example.



Frenet frames

Motivation: Given a curve T(v), we want to attach a
smoothly varying coordinate system.

To get a 3D coordinate system, we need 3
independent direction vectors.

Tangent: t(v)=normalize[T'(v)]
Binormal: b(v)=normalize[T'(v)xT"(v)]
Normal:  n(v)=b(v)xt(v)

As we move along T(v), the Frenet frame (t, b, n)
varies smoothly.



Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of
the trajectory T(v):

¢ Put C(u) in the normal plane.
¢ Place O, on T(v).

+ Align x, for C(u) with b.

+ Align y_for C(u) with -n.

Normal plane
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If T(v) is a circle, you get a surface of revolution exactly!



Degenerate frames

Let’s look back at where we computed the coordinate
frames from curve derivatives:
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Where might these frames be ambiguous or
undetermined?
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Variations

Several variations are possible:

¢ Scale C(u) as it moves, possibly using length of
T(v) as a scale factor.

+ Morph C(u) into some other curve C(u)as it
moves along 7T(v) .
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C % Tensor product Bézier surfaces
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Given a grid of control points V;, forming a control net,
construct a surface S(u,v) by:

* treating rows of V (the matrix consisting of the \/,-j-)
as control points for curves Vj(u),..., V, (u).

¢ treating V,(u),..., V, (u) as control points for a
curve parameterized by v.
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Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Vy(1/2) .

Control polygon at u=1/2 Curve at S(1/2,v)

Which control points are interpolated by the surface?

Al cornels
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Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the
Bernstein polynomials:

O(u)= 2 Vb, (u)
i=0
A tensor product Bézier surface can be written as:

S(u,v)= iiVijbl_ (u)bj (v)

i=0 j=0

In the previous slide, we constructed curves along u, and then
along v. This corresponds to re-grouping the terms like so:

S(u,v)=i (zn:r/l_jbl_ (u)] b.(v)

But, we could have constructed them along v, then u:

S(u,v)= Zn: (iV[jbj (V)J b, (u)

=0 \_j=0
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Tensor product B-spline surfaces

As with spline curves, we can piece together a
sequence of Bézier surfaces to make a spline surface. If
we enforce C? continuity and local control, we get B-
spline curves:

+ treat rows of B as control points to generate
Bézier control points in w.

¢ treat Bézier control points in v as B-spline
control pointsin v.

¢ treat B-spline control points in v to generate
Bézier control points in w.
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Tensor product B-spline surfaces, cont.

Which B-spline control points are always interpolated
by the surface?
)\/a qra
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Tensor product B-splines, cont.

Another example:

16



NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS
surfaces.
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Trimmed NURBS surfaces

Sometimes, we want to have control over which parts
of a NURBS surface get drawn.

For example:

We can do this by trimming the v-vdomain.

¢ Define a closed curve in the u-vdomain (a trim
curve)

+ Do not draw the surface points inside of this
curve.

It's really hard to maintain continuity in these regions,
especially while animating.

18



Summary

What to take home:

+ How to construct swept surfaces from a profile
and trajectory curve:

- with a fixed frame
- with a Frenet frame
+ How to construct tensor product Bézier surfaces

+ How to construct tensor product B-spline
surfaces
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