Hierarchical Modeling

Brian Curless
CSE 457
Autumn 2017

Reading

Optional:

¢ Angel, sections 8.1 - 8.6, 8.8

Further reading:
* OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

* spheres
¢ cubes
¢ cylinders

These symbols are instanced using an instance
transformation.

s Q R T i]
Q — — & o
Q: What is the matrix for the instance transformation

above?
TR L
7

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two cuboids,
with the following 3 degrees of freedom:

+ Base rotates about its vertical axis by 6
+ Upper arm rotates in its xy-plane by ¢
+ Lower arm rotates in its xy-plane by y

wer arm 4
Upper arm 4
h,
<P h,I = ¢ ";I Y
Base ‘ — X X X
z Z z

[Angel, 2011]

(Note that the angles are set to zero in the figures on the
right; i.e., the parts are shown in their “default” positions.)

Suppose we have transformations R (), R,(), R,(), T(, -,).

Q: What matrix do we use to transform the base? S(i@\ Tl

Q: What matrix product for the upper arm? Lbfz/@—//ifg

h
Q: What matrix product for the lower arm? N LA

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Lower arm

Upper 4 y
h,l
Base
—
z e

From parts to model to viewer

Model or object space

> M model

World space

view

Eye or camera space

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M, M model, M view;

main ()

{

M view = compute_view_transform() ;

robot_arm() ;

robot_arm()
{
M _model = R _y(theta);
M = M view*M model;
base() ;
M model = R_y(theta)*T(0,hl,0)*R_z(phi);
M = M view*M model;
upper_arm() ;
M _model = R_y(theta)*T(0,hl,0)*R_z(phi)*T(0,h2,0)*R_z(psi);
M = M view*M model;

lower_arm() ;

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it /in place by concatenating
matrices on the right:

Matrix M modelview;

main ()

{

M _modelview = compute_view_transform() ;
robot_arm() ;

robot_arm()
{
M modelview *= R_y(theta);
base() ;
M _modelview *= T(0,hl,0)*R_z(phi);
upper_arm() ;
M modelview *= T(0,h2,0)*R_z(psi);

lower_arm 0O

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

Chassis |

[RR LF)
RVF{ Yy 1’L7R

| Wheel I

Right-front

Left-front Left-rear
wheel wheel he

wheel

Right-rear
wheel

+ edges contain geometric transformations

+ nodes contain geometry (and possibly dr
attributes) el

We will use trees for hierarchical model L

How might we
draw the tree for

A complex example: human figure

[l

Torso
D =
M, _—)
— M My / My M
" Mha e Miya AV ~
P o~ / \ it -
Head Left-upper || |Right-upper|| | Left-upper | |Right-upper
arm arm leg leg
M M, M, M,
l Mia l z l] M
Left-lower | | Right-lower|| | Left-lower || Right-lower
arm arm leg leg

i1

Mm
the robot arm? L Q: What's the most sensible way to traverse this tree?
U 5
[&L?m\ g A & opesd Slmik
L&
9 10
Using canonical primitives vsrll Animation
Consider building the robot arm again, but this time the .
building blocks are canonical primitives like a unit cylinder The above examples are called articulated models:
and a unit cube. 5() * rigid parts
¢ connected by joints
What additional transformations are needed? T b imated b ifyina the ioint |
. . ey can be animated by specifying the joint angles
?
What does the hierarchy look like now? (or other display parameters) as functions of time.
Canonical
primitives
Unit cylinder //\ C o Unit cubs
u.L,_ %
PpTld, Stehn) | Tzase, / o3y)
wer arm tm’b
Upper arm 4 Y
h3
Base x
3
z
12

Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ Alot of skill on the part of the animator

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

+ many different objects
+ lights
+ camera position

This is called a scene tree or scene graph.

Camera

(,711,‘)
64 o)
b -Materials1 -Geometry1
. : 14
Summary

Here’s what you should take home from this lecture:

¢ All the boldfaced terms.

+ How primitives can be instanced and composed
to create hierarchical models using geometric
transforms.

¢ How the notion of a model tree or DAG can be
extended to entire scenes.

+ How OpenGL transformations can be used in
hierarchical modeling.

* How keyframe animation works.

15

