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Reading

Optional reading:

+ Angel and Shreiner: 3.1, 3.7-3.11
+ Marschner and Shirley: 2.3, 2.4.1-2.4.4,
6.1.1-6.1.4,6.2.1,6.3

Further reading:
+ Angel, the rest of Chapter 3
+ Foley, et al, Chapter 5.1-5.5.

+ David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed.,
McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x’,y’, z’) = f (x, y, 2).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x, y), in the plane orp = (x, , 2)
in 3D space:

* as column vectors X

Xy :|
* asrow vectors
z }
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We will use column vectors.
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Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M :
x' { a b X
y' c d |y

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements a, b, ¢, d...

Identity

Suppose we choosea=d=1,b=c=0:

+ Gives the identity matrix:
X
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+ Doesn't move the points at all
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Scaling Mirror ) veflickip,
Suppose we set b = ¢ =0, but let a and d take on any
positive value: Suppose we keep b = ¢ =0, but let either a or d go
R . negative.
+ Gives a scaling matrix:
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0 d
+ Provides differential (non-uniform) scaling in x
andy: 4 —X
= 1 A -
x_;" {71 0]*\‘; {1 O}R\ O‘&Vl:&l
rea 01\ijy o 1] Le tilry L
¥ % y y
T o
{0 sl ) 4L \
2 ) 4 0 2 1
1 I] 1 X X
x T—t—+—t—t—x
2 2 7
/
¥ 1 Ylt V .
I Ay fan by (3¢
i {1/2 OPHZJX okt 2y
2l 0 2 Ul 2
1
X
1 2 12




S)’llm/

Now let's leave @ = d = 1 and experiment with 5....

The matrix
i
0 1
gives:
x'=x+by
y'=y

Effect on unit square

Let's see how a general 2 x 2 transformation M affects the
unit square:
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Effect on unit square, cont. Rotation 3ol caln Fooa
Observe: From our observations of the effect on the unit square,
. X it should be easy to write down a matrix for “rotation
+ Origin invariant under M about the origin”:
¢ M can be determined just by knowing how the ,
corners (1,0) and (0,1) are mapped l
¢ aand d give x- and y-scaling
+ band cgive x- and y-shearing 1
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

+ Scaling

+ Rotation

+ Reflection
+ Shearing

Q: What important operation does that leave out?

f\fﬁws[ayﬂi’\
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

{ } :
X
>y
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Adding the third “w” component puts us in

homogenous coordinates.

And then transform with a 3 x 3 matrix:
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Anatomy of an affine matrix Rotation about arbitrary points -
Ur.1ti.l now, we have only considered rotation about the R ((/)3 _ \ ces l C;
The addition of translation to linear origin. / o Os L
transformations gives us affine transformations. With homogeneous coordinates, you can specify a rotation =
In matrix form, 2D affine transformations always by £, about any point q = g ’1)’]T with a matrix. Ty \D ° L,
look like this: Let’s do this with rotation and translation matrices of the & o 1
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2D affine transformations always have a bottom

row of [0 0 1].

An “affine point”is a “linear point” with an added
necoordinate which is always 1:

paff_{ Piin :|_
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Applying an affine transformation gives another

affine point:
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form R(&) and T(t), respectively.
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1. Translate q to origin
2. Rotate

3. Translate back
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Points and vectors

Vectors have an additional coordinate of w = 0. Thus, a
change of origin has no effect on vectors.
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D
ones.

For example, scaling:

L B R
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One useful combination of affine operations is: _ yand /7{‘/\ 7z
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Q: What does this describe? RAgAR @
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Translation in 3D Rotation in 3D (cont’d)
These are the rotations about the canonical axes:
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Shearing in 3D

Shearing is also more complicated. Here is one

example:
x' \ 0| x
Yol_|lolft//o] o | ¥
z' \o/\1) 0| z
1 0 0 0 1 1
Y
X
z

We call this a shear with respect to the x-z plane.
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Properties of affine transformations

Here are some useful properties of affine
transformations:

¢ Lines map to lines

+ Parallel lines remain parallel
+ Midpoints map to midpoints (in fact, ratios are
always preserved)
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Summary

What to take away from this lecture:

¢ All the names in boldface.

+ How points and transformations are represented.

+ How to compute lengths, dot products, and cross

products of vectors, and what their geometrical

meanings are.

What all the elements of a 2 x 2 transformation

matrix do and how these generalize to 3 x 3

transformations.

+ What homogeneous coordinates are and how
they work for affine transformations.

*

*

How to concatenate transformations.

*

The mathematical properties of affine
transformations.
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