
1

Anti-aliasing and
Monte Carlo Path Tracing

Brian Curless
CSE 457

Autumn 2017



2

Reading

Required:

 Marschner and Shirley, Section 13.4 (online 
handout)

Further reading:

 Pharr, Jakob, and Humphreys, Physically Based 
Ray Tracing: From Theory to Implementation, 
Chapter 13 

 A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. 

 Robert L. Cook, Thomas Porter, Loren 
Carpenter. “Distributed Ray Tracing.”  
Computer Graphics (Proceedings of SIGGRAPH 
84). 18 (3). pp. 137-145. 1984.

 James T. Kajiya. “The Rendering Equation.”  
Computer Graphics (Proceedings of SIGGRAPH 
86). 20 (4). pp. 143-150. 1986.



3

Aliasing

Ray tracing is a form of sampling and can suffer from 
annoying visual artifacts... 

Consider a continuous function (x).  Now sample it at 
intervals  to give [i] = quantize[(i )].

Q: How well does [i] approximate (x)?

Consider sampling a sinusoid:

In this case, the sinusoid is reasonably well 
approximated by the samples.



4

Aliasing (con’t)

Now consider sampling a higher frequency sinusoid

We get the exact same samples, so we seem to be 
approximating the first lower frequency sinusoid 
again.

We say that, after sampling, the higher frequency 
sinusoid has taken on a new “alias”, i.e., changed its 
identity to be a lower frequency sinusoid.



5

Aliasing and anti-aliasing in rendering

One of the most common rendering artifacts is the 
“jaggies”.  Consider rendering a white polygon against 
a black background:

We would instead like to get a smoother transition:

Anti-aliasing is the process of removing high 
frequencies before they cause aliasing.

In a renderer, computing the average color within a 
pixel is a good way to anti-alias.  How exactly do we 
compute the average color?



6

Antialiasing in a ray tracer

We would like to compute the average intensity in the 
neighborhood of each pixel. 

When casting one ray per pixel, we are likely to have 
aliasing artifacts.

To improve matters, we can cast more than one ray 
per pixel and average the result.

A.k.a., super-sampling and averaging down.



7

Antialiasing by adaptive sampling

Casting many rays per pixel can be unnecessarily 
costly.  If there are no rapid changes in intensity at the 
pixel, maybe only a few samples are needed.

Solution: adaptive sampling.

Q: When do we decide to cast more rays in a particular 
area?



8

Gloss and translucency

The mirror-like form of reflection, when used to 
approximate glossy surfaces, introduces a kind of 
aliasing, because we are under-sampling reflection 
(and refraction).

For example:

Distributing rays over reflection directions gives:



9

Distributing rays over light source area gives:

Soft shadows



10

Depth of field

To simulate a camera, we can model the refraction of 
light through a lens.  This will give us a “depth of field” 
effect: objects close to the in-focus plane are sharp, and 
the rest is blurry.



11

Depth of field (cont’d)

This is really similar to the pinhole camera model:

But now:

 Put the image plane at the depth you want to be in focus.
 Treat the aperture as multiple COPs (samples across the 

aperture).
 For each pixel, trace multiple viewing/primary rays for 

each COP and average the results.



12

Motion blur

Distributing rays over time gives:

How can we use super-sampling and averaging down 
to get motion blur?



13

Consider Whitted vs. a brute force approach with anti-aliasing, depth of field, area lights, gloss…

Asymptotic # of intersection tests =

For m =1,000, k = a = s = r = 8, n = 1,000,000,            , d = 8 … very expensive!!

Whitted
ray tracing

Brute force,
advanced 

ray tracing

Naively improving Whitted ray tracing

ℓ  4

Advanced ray tracing has:

 m x m pixels
 k x k supersampling
 a x a sampling of 

camera aperture
 n primitives
 area light sources
 s x s sampling of each 

area light source
 r x r rays cast recursively 

per intersection 
(gloss/translucency)

 d is average ray path 
length 

ℓ



14

Penumbra revisited

Let’s revisit the area light source…

We can trace a ray from the viewer through a pixel, 
but now when we hit a surface, we cast rays to 
samples on the area light source.



15

Penumbra revisited

We should anti-alias to get best looking results.  

Whoa, this is a lot of rays…just for one pixel!!



16

Penumbra revisited

We can get a similar result with much less computation:
 Choose random location within a pixel, trace ray.
 At first intersection, choose random location on area 

light source and trace shadow ray.
 Continue recursion as with Whitted, but always choose 

random location on area light for shadow ray.



17

Monte Carlo Path Tracing vs. Brute Force

We can generalize this idea to do random sampling for 
each viewing ray, shadow ray, reflected ray, etc.  This 
approach is called Monte Carlo Path Tracing (MCPT).

Monte Carlo
path tracing

Brute force,
advanced 

ray tracing



18

MCPT vs. Whitted

Q: For a fixed number of rays per pixel, does MCPT 
trace more total rays than Whitted?

Q: Does MCPT give the same answer every time?

Whitted
ray tracing

Monte Carlo
path tracing



19

Ray tracing as integration

Ray tracing amounts to estimating a multi-
dimensional integral at each pixel.  The integration is 
over:

 the pixel area
 the aperture
 each light source
 all diffuse/glossy reflections (recursively)

MCPT images are often noisy.  We can reduce noise by 
being smarter about which rays we cast…



20

Intergration over reflection

Integration over diffuse/glossy reflections is at the 
heart of rendering.  Recall that the BRDF tells us how 
incoming light will scatter into outgoing directions:

By reciprocity, we can replace in on the left side 
above with out, and treat the function fr(in, out) as 
the “sensitivity” to different incoming directions.

To compute the total light for an outgoing direction, 
we integrate all incoming directions:

To integrate in with MCPT, when considering 
reflection recurstion, we could just:

 Cast a ray in a (uniformly) random direction
 Weight the result by

fr (in,out )in

I(out )  I(in ) fr (in,out ) in N d
H
 in

fr (in,out ) in N 



21

Importance sampling of reflection
For a given BRDF:

again the surface reflection equation is:

With importance sampling:

 Cast a ray in a direction drawn from a distribution 
p(in) that is large where the BRDF is large.

 Weight the ray by:

Ideally, the distribution is proportional to the BRDF:

fr (in,out )out

I(out )  I(in ) fr (in,out ) in N d
H
 in

p in  ~ fr (in,out ) in N 

   ( , /)in out in inrf p   N



22100 rays/pixel without importance sampling



23100 rays/pixel with importance sampling



24200 rays/pixel without importance sampling



25900 rays/pixel with importance sampling



26

Penumbra revisited: clumped samples



27

Penumbra: stratified sampling

Stratified sampling gives a better distribution of samples:

 Break pixel and light source into regions.  
 Choose random locations within each region.
 Trace rays through/to those jittered locations.



28

Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over a 
2D pixel  (here 16 rays/pixel):

The stratified pattern on the right is also sometimes 
called a jittered sampling pattern.

Similar grids can be constructed over the camera 
aperture, light sources, and diffuse/glossy reflection 
directions.

Random Stratified



2925 rays/pixel without stratified sampling



3025 rays/pixel with stratified sampling



3164 rays/pixel without stratified sampling



32400 rays/pixel with stratified sampling



33

Summary

What to take home from this lecture:

 The meanings of all the boldfaced terms.
 An intuition for what aliasing is.
 How to reduce aliasing artifacts in a ray tracer
 The limitations of Whitted ray tracing (no glossy 

surfaces, etc.)
 The main idea behind Monte Carlo path tracing 

and what effects it can simulate (glossy surfaces, 
etc.)


