Shading

Brian Curless CSE 457 Spring 2016

Reading

Required:

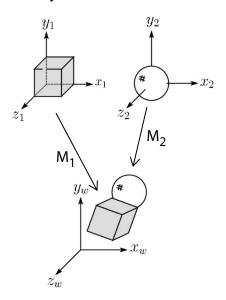
• Angel chapter 5.

Optional:

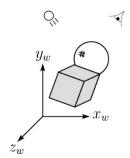
• OpenGL red book, chapter 5.

Basic 3D graphics

With affine matrices, we can now transform virtual 3D objects in their local coordinate systems into a global (world) coordinate system:

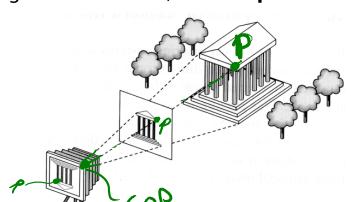


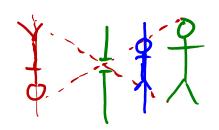
To synthesize an image of the scene, we also need to add light sources and a viewer/camera:



Pinhole camera

To create an image of a virtual scene, we need to define a camera, and we need to model lighting and shading. For the camera, we use a **pinhole camera**.





The image is rendered onto an **image plane** (usually in front of the camera).

[Angel, 2011]

Viewing rays emanate from the **center of projection** (COP) at the center of the pinhole.

The image of an object point **P** is at the intersection of the viewing ray through **P** and the image plane.

But is P visible? This the problem of **hidden surface removal** (a.k.a., **visible surface determination**). We'll consider this problem later.

Shading

Next, we'll need a model to describe how light interacts with surfaces.

Such a model is called a **shading model**.

Other names:

- Lighting model
- Light reflection model
- Local illumination model
- Reflectance model
- BRDF

An abundance of photons

Given the camera and shading model, properly determining the right color at each pixel is *extremely hard*.

Look around the room. Each light source has different characteristics. Trillions of photons are pouring out every second.

These photons can:

- interact with molecules and particles in the air ("participating media")
- strike a surface and
 - be absorbed
 - be reflected (scattered)
 - cause fluorescence or phosphorescence.
- interact in a wavelength-dependent manner
- generally bounce around and around

Our problem

We're going to build up to a *approximations* of reality called the **Phong and Blinn-Phong illumination models**.

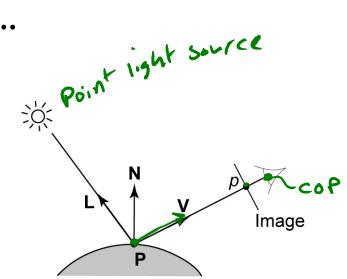
They have the following characteristics:

- not physically correct
- gives a "first-order" approximation to physical light reflection
- very fast
- widely used

In addition, we will assume **local illumination**, i.e., light goes: light source -> surface -> viewer.

No interreflections, no shadows.

Setup...



Given:

- ◆ a point P on a surface visible through pixel p
- The normal N at P
- The lighting direction, L, and (color) intensity, I_L, at P
- ◆ The viewing direction, **V**, at **P**
- The shading coefficients at **P**

Compute the color, /, of pixel p.

Assume that the direction vectors are normalized:

$$\|\mathbf{N}\| = \|\mathbf{L}\| = \|\mathbf{V}\| = 1$$

"Iteration zero"

The simplest thing you can do is...

Assign each polygon a single color:

$$I = k_e$$

where

- / is the resulting intensity
- k_e is the **emissivity** or intrinsic shade associated with the object

This has some special-purpose uses, but not really good for drawing a scene.

[Note: k_e is omitted in Angel.]

"Iteration one"

Let's make the color at least dependent on the overall quantity of light available in the scene:

$$I = k_e + k_a I_{La}$$

- k_a is the ambient reflection coefficient.
 - really the reflectance of ambient light
 - "ambient" light is assumed to be equal in all directions
- /_{La} is the **ambient light intensity**.

Physically, what is "ambient" light?
"Post man's nterreflection"

[Note: Angel uses L_a instead of I_{La} .]

Wavelength dependence

Really, k_e , k_a , and I_{La} are functions over all wavelengths λ .

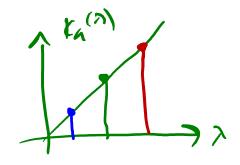
Ideally, we would do the calculation on these functions. For the ambient shading equation, we would start with:

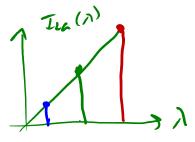
$$I(\lambda) = k_a(\lambda)I_{La}(\lambda)$$

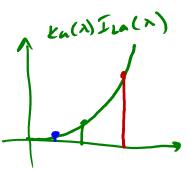
then we would find good RGB values to represent the spectrum $I(\lambda)$.

Traditionally, though, k_a and I_{La} are represented as RGB triples, and the computation is performed on each color channel separately:

$$I^{R} = k_{a}^{R} I_{La}^{R}$$
$$I^{G} = k_{a}^{G} I_{La}^{G}$$
$$I^{B} = k_{a}^{B} I_{La}^{B}$$







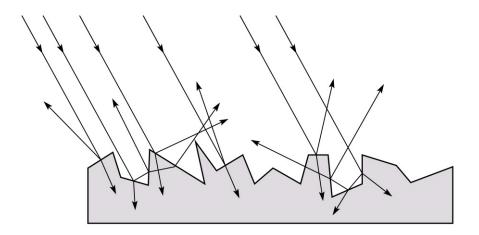
Diffuse reflectors

Emissive and ambient reflection don't model realistic lighting and reflection. To improve this, we will look at **diffuse** (a.k.a., **Lambertian**) reflection.

Diffuse reflection can occur from dull, matte surfaces, like latex paint, or chalk.

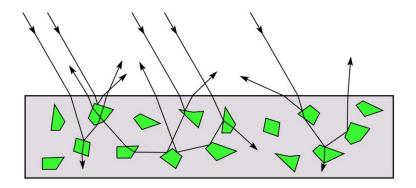
These diffuse reflectors reradiate light equally in all directions.

Picture a rough surface with lots of tiny **microfacets**.



Diffuse reflectors

...or picture a surface with little pigment particles embedded beneath the surface (neglect reflection at the surface for the moment):



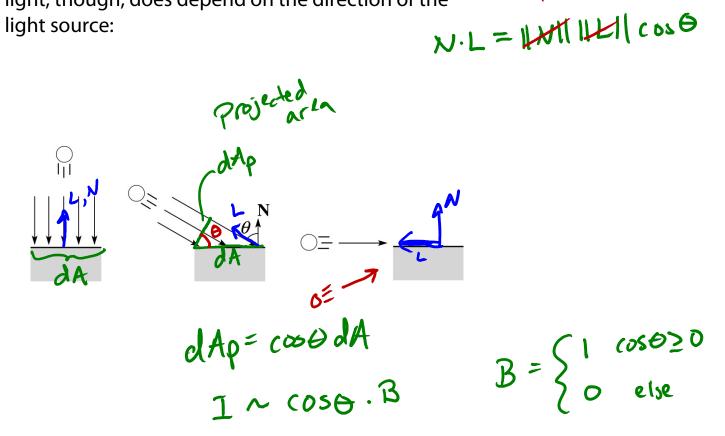
The microfacets and pigments distribute light rays in all directions.

Embedded pigments are responsible for the coloration of diffusely reflected light in plastics and paints.

Note: the figures in this and the previous slide are intuitive, but not strictly (physically) correct.

Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does not depend on the direction of the viewer. The incoming light, though, does depend on the direction of the light source:



"Iteration two"

The incoming energy is proportional to <u>toso</u>, giving the diffuse reflection equations:

$$I = k_e + k_a I_{La} + k_d I_L B \underline{C}$$

$$= k_e + k_a I_{La} + k_d I_L B(\mathcal{N} \cdot \mathbf{L})$$

where:

- *k_d* is the diffuse reflection coefficient
- I₁ is the (color) intensity of the light source
- **N** is the normal to the surface (unit vector)
- ◆ **L** is the direction to the light source (unit vector)
- ◆ *B* prevents contribution of light from below the surface:

$$B = \begin{cases} 1 & \text{if } \mathbf{N} \cdot \mathbf{L} > \mathbf{0} \\ 0 & \text{if } \mathbf{N} \cdot \mathbf{L} \le \mathbf{0} \end{cases}$$

[Note: Angel uses L_d instead of I_L and f instead of B.]

Specular reflection

Specular reflection accounts for the highlight that you see on some objects.

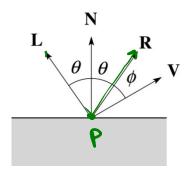
It is particularly important for *smooth, shiny* surfaces, such as:

- metal
- polished stone
- plastics
- apples
- skin

Properties:

- ◆ Specular reflection depends on the viewing direction **V**.
- For non-metals, the color is determined solely by the color of the light.
- For metals, the color may be altered (e.g., brass)

Specular reflection "derivation"



For a perfect mirror reflector, light is reflected about **N**, so

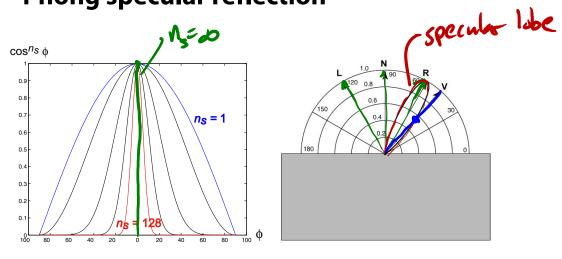
$$I = \begin{cases} I_{L} & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

For a near-perfect reflector, you might expect the highlight to fall off quickly with increasing angle ϕ .

Also known as:

- "rough specular" reflection
- "directional diffuse" reflection
- "glossy" reflection

Phong specular reflection



One way to get this effect is to take ($\mathbf{R-V}$), raised to a power n_s .

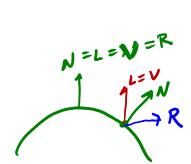
As n_s gets larger,

- the dropoff becomes {more(less)gradual
- gives a {larger smaller} highlight
- simulates a {more less} mirror-like surface

Phong specular reflection is proportional to:

$$I_{\text{specular}} \sim B(\mathbf{R} \cdot \mathbf{V})_{+}^{n_s}$$

where $(x)_{+} \equiv \max(0, x)$.

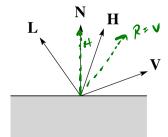


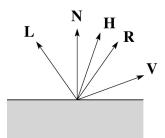
Blinn-Phong specular reflection

A common alternative for specular reflection is the **Blinn-Phong model** (sometimes called the **modified Phong model**.)

We compute the vector halfway between **L** and **V** as:

$$H = \frac{1}{2} \frac{(L+V)}{\frac{1}{2} ||L+V||}$$





Analogous to Phong specular reflection, we can compute the specular contribution in terms of (**N·H**), raised to a power n_s :

$$I_{\text{specular}} \sim B(\mathbf{N} \cdot \mathbf{H})_{+}^{n_{\text{s}}}$$

where, again, $(x)_{+} \equiv \max(0, x)$.

"Iteration three"

The next update to the Blinn-Phong shading model is then:

$$I = k_e + k_a I_{La} + k_d I_{LB} (\mathbf{N} \cdot \mathbf{L}) + k_s I_{LB} (\mathbf{N} \cdot \mathbf{H})_{+}^{n_s}$$

$$= k_e + k_a I_{La} + I_{LB} [k_d (\mathbf{N} \cdot \mathbf{L}) + k_s (\mathbf{N} \cdot \mathbf{H})_{+}^{n_s}]$$

where:

- k_s is the specular reflection coefficient
- n_s is the specular exponent or shininess
- H is the unit halfway vector between L and V, where V is the viewing direction.

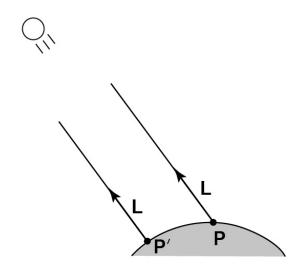
[Note: Angel uses a instead of n_s , and maintains a separate L_d and L_s , instead of a single I_L . This choice reflects the flexibility available in OpenGL.]

Directional lights

The simplest form of lights supported by renderers are ambient, directional, and point. Spotlights are also supported often as a special form of point light.

We've seen ambient light sources, which are not really geometric.

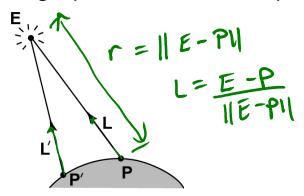
Directional light sources have a single direction and intensity associated with them.



Using affine notation, what is the homogeneous coordinate for a directional light?

Point lights

The direction of a **point light** sources is determined by the vector from the light position to the surface point.



Physics tells us the intensity must drop off inversely with the square of the distance:

$$f_{\text{atten}} = \frac{1}{r^2}$$

Sometimes, this distance-squared dropoff is considered too "harsh." A common alternative is:

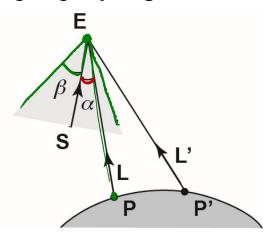
$$f_{\text{atten}} = \frac{1}{a + br + cr^2}$$

with user-supplied constants for a, b, and c.

Using affine notation, what is the homogeneous coordinate for a point light?

Spotlights

We can also apply a *directional attenuation* of a point light source, giving a **spotlight** effect.



A common choice for the spotlight intensity is:

$$f_{\text{spot}} = \begin{cases} \frac{\left(\mathbf{L} \cdot \mathbf{S}\right)^e}{a + br + cr^2} & \alpha \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

where

- L is the direction to the point light.
- **S** is the center direction of the spotlight.
- α is the angle between **L** and **S**
- β is the cutoff angle for the spotlight
- e is the angular falloff coefficient

Note: $\alpha \leq \beta \iff \cos^{-1}(\mathbf{L} \cdot \mathbf{S}) \leq \beta \iff \mathbf{L} \cdot \mathbf{S} \geq \cos \beta$.

"Iteration four"

Since light is additive, we can handle multiple lights by taking the sum over every light.

Our equation is now:

$$I = k_e + k_a I_{La} + \frac{\left(\mathbf{L}_j \cdot \mathbf{S}_j\right)_{\beta_j}^{e_j}}{a_j + b_j r_j + c_j r_j^2} I_{L,j} B_j \left[k_d \left(\mathbf{N} \cdot \mathbf{L}_j\right) + k_s \left(\mathbf{N} \cdot \mathbf{H}_j\right)_{+}^{n_s} \right]$$

This is the Blinn-Phong illumination model (for spotlights).

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?

Shading in OpenGL

The OpenGL lighting model allows you to associate different lighting colors according to material properties they will influence.

Thus, our original shading equation (for point lights):

$$I = k_e + k_a I_{La} + \sum_{j} \frac{1}{a_j + b_j r_j + c_j r_j^2} I_{L,j} B_j \left[k_d \left(\mathbf{N} \cdot \mathbf{L}_j \right) + k_s \left(\mathbf{N} \cdot \mathbf{H}_j \right)_+^{n_s} \right]$$

becomes:

$$I = k_e + k_a I_{La} + \sum_{j} \frac{1}{a_j + b_j r_j + c_j r_j^2} \left[k_a I_{La,j} + B_j \left\{ k_d I_{Ld,j} (\mathbf{N} \cdot \mathbf{L}_j) + k_s I_{Ls,j} (\mathbf{N} \cdot \mathbf{H}_j)_{+}^{n_s} \right\} \right]$$

where you can have a global ambient light with intensity I_{La} in addition to having an ambient light intensity $I_{La,j}$ associated with each individual light, as well as separate diffuse and specular intensities, $I_{Ld,j}$ and $I_{Ls,j}$, repectively.

Materials in OpenGL

The OpenGL code to specify the surface shading properties is fairly straightforward. For example:

```
GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);
glMaterialfv(GL_FRONT, GL_SHININESS, ns);
```

Notes:

- The GL_FRONT parameter tells OpenGL that we are specifiying the materials for the front of the surface.
- Only the alpha value of the diffuse color is used for blending. It's usually set to 1.

Shading in OpenGL, cont'd

In OpenGL this equation, for one light source (the 0th) is specified something like:

```
GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 };
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 };
GLfloat a0[] = \{ 1.0 \};
GLfloat b0[] = \{ 0.5 \};
GLfloat c0[] = \{ 0.25 \};
GLfloat S0[] = { -1.0, -1.0, 0.0 };
GLfloat beta0[] = { 45 };
GLfloat e0[] = { 2 };
glLightModelfv(GL LIGHT MODEL AMBIENT, La);
glLightfv(GL LIGHTO, GL AMBIENT, LaO);
glLightfv(GL LIGHTO, GL DIFFUSE, Ld0);
glLightfv(GL LIGHTO, GL SPECULAR, Ls0);
glLightfv(GL LIGHT0, GL POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
glLightfv(GL LIGHTO, GL LINEAR ATTENUATION, b0);
glLightfv(GL LIGHTO, GL QUADRATIC ATTENUATION, c0);
glLightfv(GL LIGHTO, GL SPOT DIRECTION, S0);
glLightf(GL LIGHT0, GL SPOT CUTOFF, beta0);
glLightf(GL LIGHT0, GL SPOT EXPONENT, e0);
```

Shading in OpenGL, cont'd

Notes:

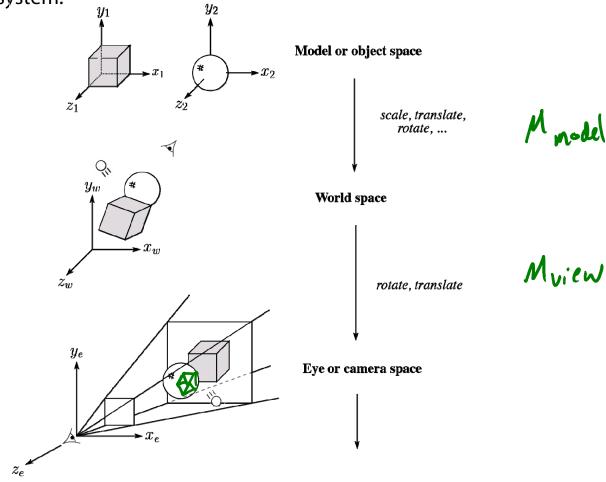
You can have as many as GL_MAX_LIGHTS lights in a scene. This number is system-dependent.

For directional lights, you specify a light direction, not position, and the attenuation and spotlight terms are ignored.

The directions of directional lights and spotlights are specified in the coordinate systems *of the lights*, not the surface points as we've been doing in lecture.

3D Geometry in the Graphics Hardware Pipeline

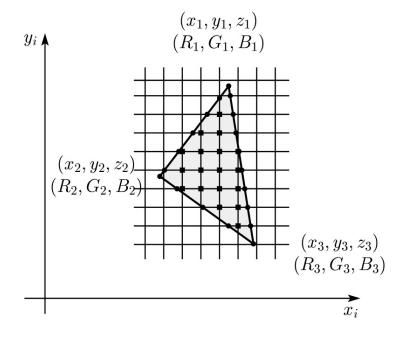
Graphics hardware applies transformations to bring the objects and lighting into the camera's coordinate system:



The geometry is assumed to be made of triangles, and the **vertices** are projected onto the image plane.

Rasterization

After projecting the vertices, graphics hardware "smears" vertex properties across the interior of the triangle in a process called **rasterization**.



Smearing the z-values and using a Z-buffer will enable the graphics hardware to determine if a point inside a triangle is visible. (More on this in another lecture.)

If we have stored colors at the vertices, then we can smear these as well.

Shading the interiors of triangles

We will be computing colors using the Blinn-Phong lighting model.

Let's assume (as graphics hardware does) that we are working with triangles.

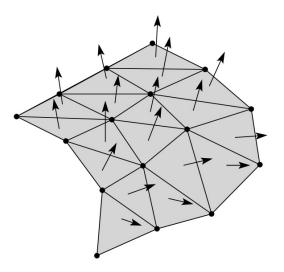
How should we shade the interiors of triangles?

Shading with per-face normals

مرار مرار

Assume each face has a constant normal:

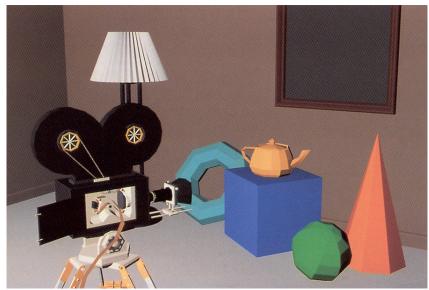
L= wast



V= const (for distant viewr)

For a distant viewer and a distant light source and constant material properties over the surface, how will the color of each triangle vary?

Faceted shading (cont'd)



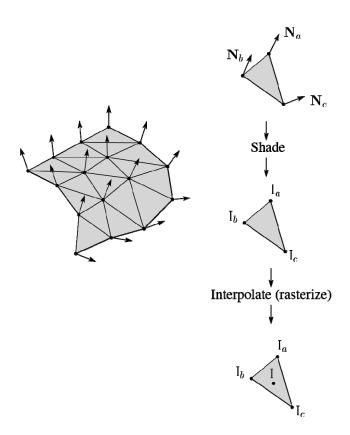
[Williams and Siegel 1990]

Gouraud interpolation

To get a smoother result that is easily performed in hardware, we can do **Gouraud interpolation**.

Here's how it works:

- 1. Compute normals at the vertices.
- 2. Shade only the vertices.
- 3. Interpolate the resulting vertex colors.



Facted shading vs. Gouraud interpolation

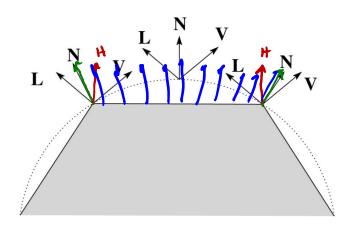
[Williams and Siegel 1990]

Gouraud interpolation artifacts

Qu

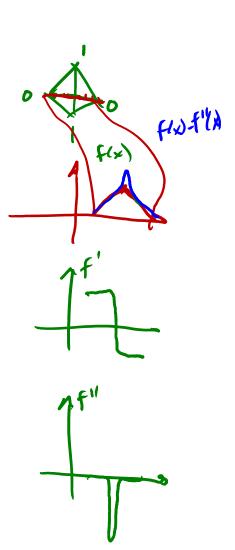
Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we can miss specular highlights.



This is what graphics hardware does by default.

A substantial improvement is to do...

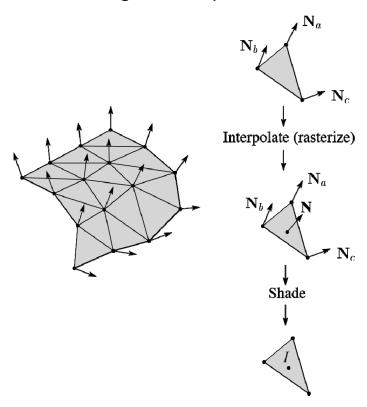


Phong interpolation

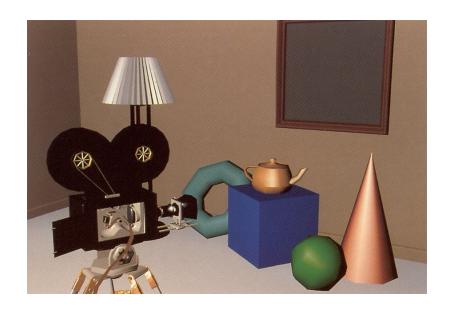
To get an even smoother result with fewer artifacts, we can perform **Phong** *interpolation*.

Here's how it works:

- 1. Compute normals at the vertices.
- 2. Interpolate normals and normalize.
- 3. Shade using the interpolated normals.

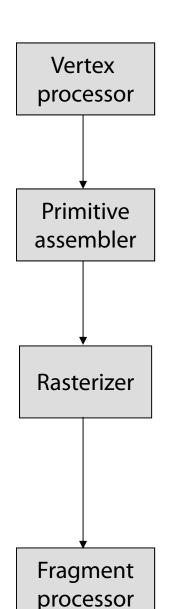


Gouraud vs. Phong interpolation



[Williams and Siegel 1990]

Old pipeline: Gouraud interpolation



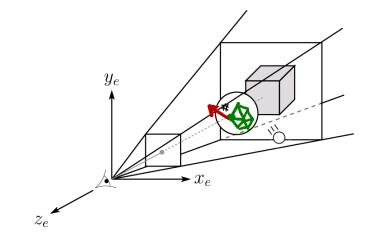
Default vertex processing:

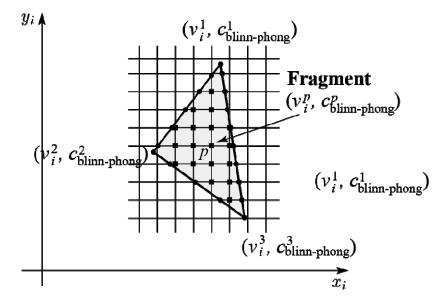
 $L \leftarrow$ determine lighting direction $V \leftarrow$ determine viewing direction $N \leftarrow$ normalize(n_e)

 $c_{\text{blinn-phong}} \leftarrow \text{shade with } L, V, N, k_d, k_s, n_s$

attach $c_{\text{blinn-phong}}$ to vertex as "varying" $v_j \leftarrow$ project v to image

$$v_i^1, v_i^2, v_i^3 \rightarrow \text{triangle}$$

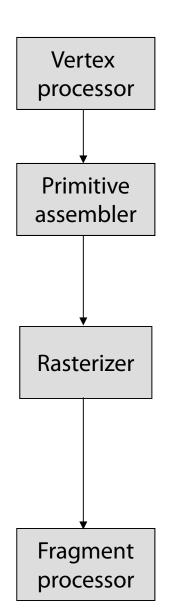




Default fragment processing:

$$\mathsf{color} \leftarrow c^p_{\mathsf{blinn-phong}}$$

Programmable pipeline: Phong-interpolated normals!



Vertex shader:

attach n_e to vertex as "varying" attach v_e to vertex as "varying" $v_i \leftarrow$ project v to image

 y_e

$$v_i^1, v_i^2, v_i^3 \rightarrow \text{triangle}$$



Fragment shader:

 $L \leftarrow$ determine lighting direction (using v_e^p)

 $V \leftarrow \text{normalize}(-v_e^p)$

 $N \leftarrow \text{normalize}(n_e^p)$

color \leftarrow shade with L, V, N, k_d, k_s, n_s

OpenGL shader validation

Make sure Your shader Works Works Note: we recommend you use an OpenGL "validator" tool (e.g., the Khronos reference compiler) to ensure that your shader meets the standards.

Sometimes a shader will run on your machine, despite having a problem with the code. That problem may cause it to fail on other machines.

Why should you care?

- 1. Your shader must work on our lab machines. If you develop at home, you might create a shader that doesn't run in the lab.
- 2. You will share your shaders with the class during artifact voting. Your shader may not work on other people's machines if you didn't validate it.
- 3. It's good practice!

Choosing Blinn-Phong shading parameters

Experiment with different parameter settings. To get you started, here are a few suggestions:

- Try n_s in the range [0,100]
- Try $k_a + k_d + k_s < 1$
- Use a small k_a (~0.1)

	n _s	k _d	k _s
Metal	large	Small, color of metal	Large, color of metal
Plastic	medium	Medium, color of plastic	Medium, white
Planet	0	varying	0

BRDF

The diffuse+specular parts of the Blinn-Phong illumination model are a mapping from light to viewing directions:

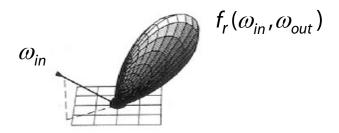
$$I = I_{L}B \left[K_{d}(\mathbf{N} \cdot \mathbf{L}) + K_{s}\mathbf{N} \cdot \left(\frac{\mathbf{L} + \mathbf{V}}{\|\mathbf{L} + \mathbf{V}\|} \right)_{+}^{n_{s}} \right]$$
$$= I_{L} f_{r}(\mathbf{L}, \mathbf{V})$$

The mapping function f_r is often written in terms of incoming (light) directions ω_{in} and outgoing (viewing) directions ω_{out} :

$$f_r(\omega_{in}, \omega_{out})$$
 or $f_r(\omega_{in} \rightarrow \omega_{out})$

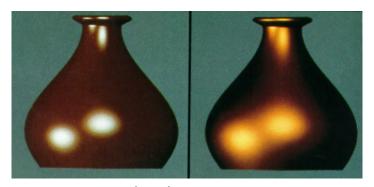
This function is called the **Bi-directional Reflectance Distribution Function** (**BRDF**).

Here's a plot with ω_{in} held constant:

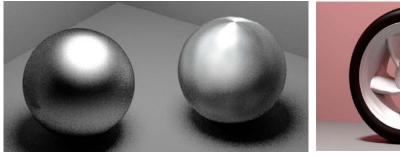


BRDF's can be quite sophisticated...

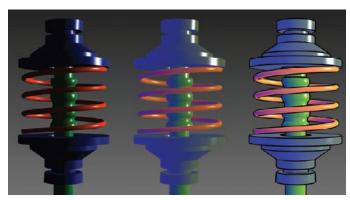
More sophisticated BRDF's



[Cook and Torrance, 1982]



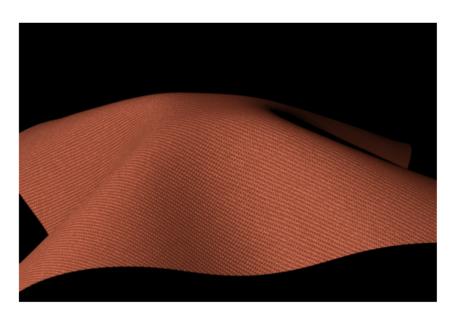
Anisotropic BRDFs [Westin, Arvo, Torrance 1992]

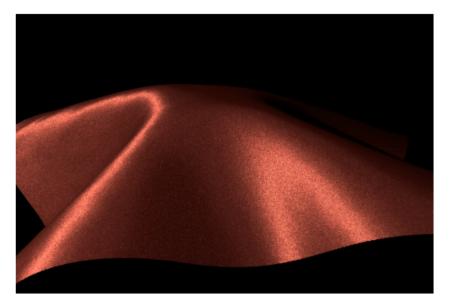


Artistics BRDFs [Gooch]

More sophisticated BRDF's (cont'd)

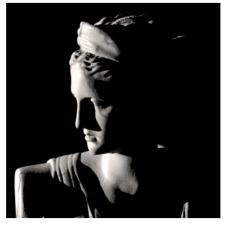
Hair illuminated from different angles [Marschner et al., 2003]

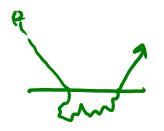




Wool cloth and silk cloth [Irawan and Marschner, 2012]

BSSRDFs for subsurface scattering





[Jensen et al. 2001]

Summary

You should understand the equation for the Blinn-Phong lighting model described in the "Iteration Four" slide:

- What is the physical meaning of each variable?
- How are the terms computed?
- What effect does each term contribute to the image?
- What does varying the parameters do?

You should also understand the differences between faceted, Gouraud, and Phong *interpolated* shading.