Reading

Jain, Kasturi, Schunck, *Machine Vision*. McGraw-Hill, 1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. [online handout]

Image processing

Brian Curless CSE 457 Spring 2016

What is an image?

We can think of an **image** as a function, f_i from \mathbb{R}^2 to \mathbb{R} :

- f(x, y) gives the intensity of a channel at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 f: [*a*, *b*] x [*c*, *d*] → [0,1]

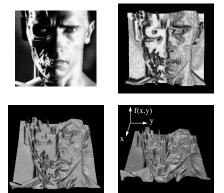
A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

1

4

Images as functions



What is a digital image?

In computer graphics, we usually operate on **digital** (**discrete**) images:

- Sample the space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

f[i,j] =Quantize{ $f(i\Delta, j\Delta)$ }

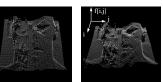


Image processing

An **image processing** operation typically defines a new image *g* in terms of an existing image *f*.

The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

g(x,y) = t(f(x,y))

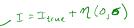
Examples: threshold, RGB \rightarrow grayscale

Note: a typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y.

Y		0.299	0.587 -0.275 -0.523	0.114	$\lceil R \rceil$
1	=	0.596	-0.275	-0.321	G
Q		0.212	-0.523	0.311	B

Noise

Image processing is also useful for noise reduction and edge enhancement. We will focus on these applications for the remainder of the lecture...



Common types of noise:

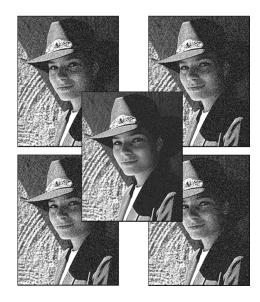
- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

7

5

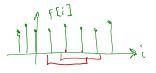
Ideal noise reduction

Ideal noise reduction



Practical noise reduction

How can we "smooth" away noise in a single image?

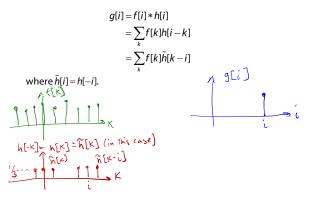


Is there a more abstract way to represent this sort of operation? *Of course there is*!

Discrete convolution

One of the most common methods for filtering an image is called **discrete convolution**. (We will just call this "convolution" from here on.)

In 1D, convolution is defined as:



"Flipping" the kernel (i.e., working with *h*[-*i*]) is mathematically important. In practice, though, you can assume kernels are pre-flipped unless I say otherwise.

11

Convolution in 2D

In two dimensions, convolution becomes:

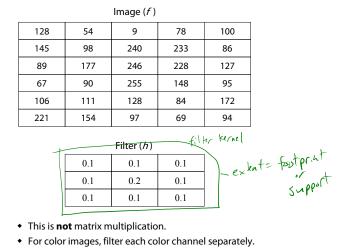
$$g[i, j] = f[i, j] * h[i, j]$$
$$= \sum_{\ell} \sum_{k} f[k, \ell] h[i - k, j - \ell]$$
$$= \sum_{\ell} \sum_{k} f[k, \ell] \tilde{h}[k - i, \ell - j]$$

where $\tilde{h}[i, j] = h[-i, -j]$.

Again, "flipping" the kernel (i.e., working with *h*[-*i*, -*j*]) is mathematically important. In practice, though, you can assume kernels are pre-flipped unless I say otherwise.

Convolving in 2D

Since *f* and *h* are defined over finite regions, we can write them out in two-dimensional arrays:



• The *filter* is assumed to be zero outside its boundary.

Q: What happens at the boundary of the *image*?

Normalization

Suppose *f* is a flat / constant image, with all pixel values equal to some value *C*.

Image (f)

3 ()							
С	С	С	С	С			
С	С	С	С	С			
С	С	С	С	С			
С	С	С	С	С			
С	С	С	С	С			
С	С	С	С	С			

Filter (h)

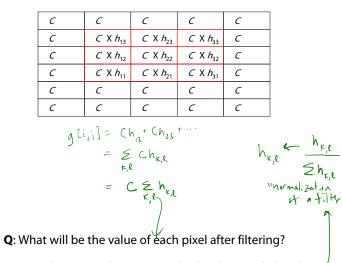
<i>h</i> ₁₃	h ₂₃	h ₃₃	
<i>h</i> ₁₂	h ₂₂	h ₃₂	
<i>h</i> ₁₁	h ₂₁	<i>h</i> ₃₁	

Q: What will be the value of each pixel after filtering?

Q: How do we avoid getting a value brighter or darker than the original image?

13

Normalization



Q: How do we avoid getting a value brighter or darker than the original image?

Mean filters

Effect of mean filters

Gaussian

noise

Salt and pepper noise

How can we represent our noise-reducing averaging as a convolution filter (know as a **mean filter**)?

 $\frac{1}{N^2}$ N \sim 1/N² - - -1/12 - - 1/N2

17

3x3 Image: Constraint of the second sec

Gaussian filters

Gaussian filters weigh pixels based on their distance from the center of the convolution filter. In particular:

$$h[i,j] = \frac{e^{-(i^2+j^2)/(2\sigma^2)}}{C}$$

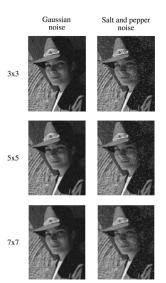
This does a decent job of blurring noise while preserving features of the image.

What parameter controls the width of the Gaussian? σ

What happens to the image as the Gaussian filter kernel gets wider?

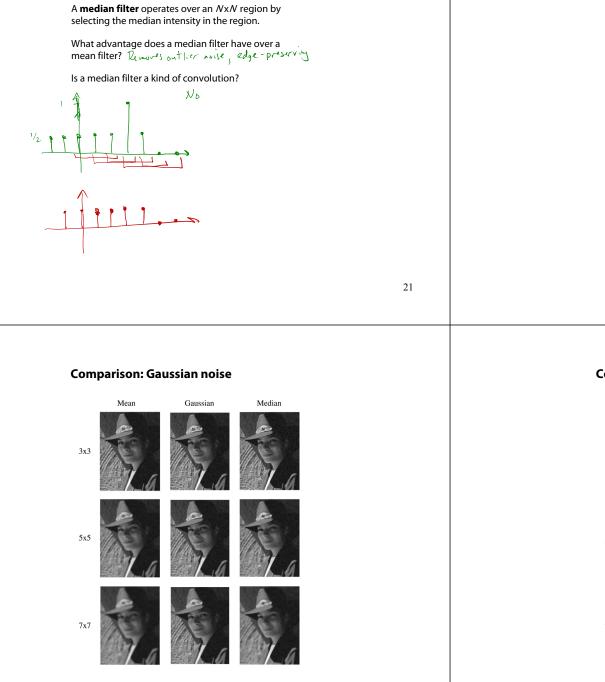
What is the constant *C*? What should we set it to?

 $C = \sum_{i,j} h[i,j]$

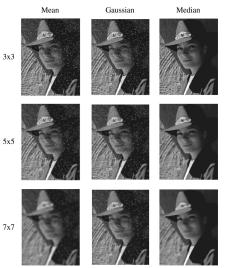


Median filters

Effect of median filters



Comparison: salt and pepper noise



Bilateral filtering

Bilateral filtering is a method to average together nearby samples only if they are similar in value. "range" "domain"

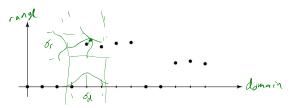
Q: What happens as the range size becomes large? $h \rightarrow \mathcal{O} \xrightarrow{} m can$

Q: Will bilateral filtering take care of impulse noise? No.

25

Bilateral filtering

We can also change the filter to something "nicer" like Gaussians:



Where σ_d is the width of the domain Gaussian and σ_r is the width of the range Gaussian.

26

Bilateral filtering

Recall that convolution looked like this:

$$g[i] = \frac{1}{C} \sum_{k} f[k] h_d[i-k]$$

with normalization (sum of filter values):

$$C = \sum_{i} h_d [i - k]$$

This was just domain filtering.

The bilateral filter is similar, but includes both domain and range filtering:

$$g[i] = \frac{1}{C} \sum_{k} f[k] h_d[i-k] h_r(f[i] - f[k])$$

with normalization (sum of filter values):

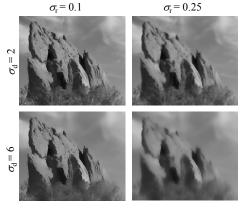
$$C = \sum_{k} h_d[i-k] h_r(f[i]-f[k])$$

Note that with regular convolution, we pre-compute C once, but for bilateral filtering, we must compute it at each pixel location where it's applied.

Also, for color, we compute range distance in R, G, Bspace:

$$f[i] - f[k] \rightarrow \sqrt{\left(R[i] - R[k]\right)^2 + \left(G[i] - G[k]\right)^2 + \left(B[i] - B[k]\right)^2}$$

 $\sigma_r = 0.25$

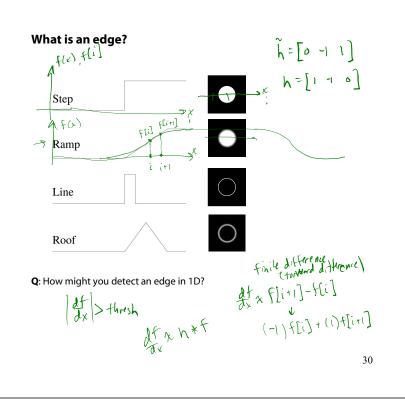


Paris, et al. SIGGRAPH course notes 2007

Edge detection

One of the most important uses of image processing is edge detection:

- Really easy for humans
- Really difficult for computers
- Fundamental in computer vision
- Important in many graphics applications



29

Gradients

The gradient is the 2D equivalent of the derivative:

$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Properties of the gradient

It's a vector

$$|| \nabla f || = \int \partial f \langle x + \partial f \rangle^{2}$$

6=tan (at/2)

- Points in the direction of maximum increase of t
- Magnitude is rate of increase

Note: use $\frac{1}{2}$ (y, x) to compute the angle of the gradient (or any 2D vector).

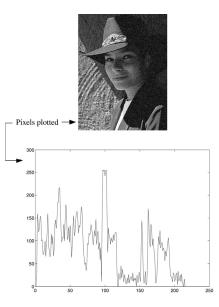
How can w image?

ĥy= -1 Ò

~~=[0-1]

we approximate the gradient in a discrete

$$\frac{2f}{\partial x} \approx f[i^{*}i, j] - f[i, j]$$

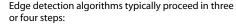


Steps in edge detection

Edge enhancement

contral difference

A popular gradient filter is the **Sobel operator**:



- Filtering: cut down on noise
- Enhancement: amplify the difference between edges and non-edges
- **Detection**: use a threshold operation
- + Localization (optional): estimate geometry of edges as 1D contours that can pass between pixels

[-1 0 I] $\tilde{s}_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \longrightarrow \tilde{s}_{x} \approx S_{x} \approx f$ $\tilde{s}_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \xrightarrow{>} \underbrace{ \xrightarrow{?}}_{P} \hat{\gamma} \approx S_{Y} \stackrel{\text{split}}{\uparrow} \hat{\gamma}$

We can then compute the magnitude of the vector $(\tilde{s}_x, \tilde{s}_y).$

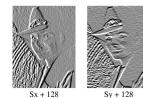
Note that these operators are conveniently "preflipped" for convolution, so you can directly slide these across an image without flipping first.

33

35

Results of Sobel edge detection

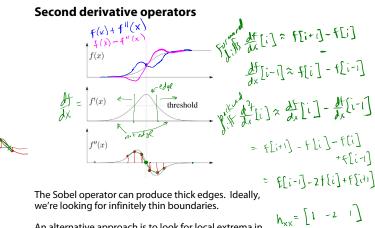
Smoothed



Magnitude

Threshold = 64

Threshold = 128



An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.

hxx Q: A peak in the first derivative corresponds to what in the second derivative?

10

~

Q: How might we write this as a convolution filter?

Constructing a second derivative filter

We can construct a second derivative filter from the first derivative.

First, one can show that convolution has some convenient properties. Given functions *a*, *b*, *c*.

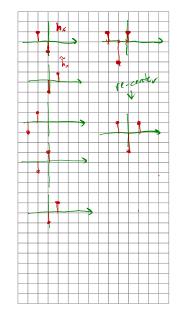
Commutative: a*b=b*a \rightarrow Associative: (a*b)*c=a*(b*c)Distributive: a*(b+c)=a*b+a*c

 $\begin{array}{ll} \mbox{The "flipping" of the kernel is needed for associativity.} \\ \mbox{Now let's use associativity to construct our second} \\ \mbox{derivative filter...} \qquad h_z \in [1 - 1 - 0 \end {fluctuations}] \\ \end{array}$

$$\frac{df}{dx} \approx h_x * f \qquad \hat{h}_x = [0 - 1 \ 1]$$

$$\frac{d}{dx} \frac{df}{dx} \approx h_x * (h_x * f) = (h_x + h_x) * f$$

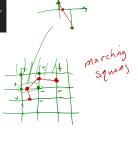
$$= h_{xx} * f$$



37

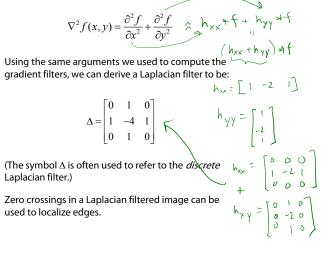
Localization with the Laplacian

Original

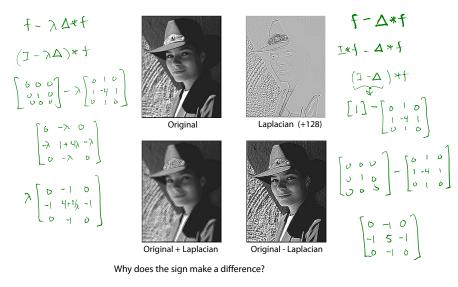


Localization with the Laplacian

An equivalent measure of the second derivative in 2D is the **Laplacian**:



Sharpening with the Laplacian



How can you write the filter that makes the sharpened image?

40

Summary

What you should take away from this lecture:

- The meanings of all the boldfaced terms.
- How noise reduction is done
- How discrete convolution filtering works
- The effect of mean, Gaussian, and median filters
- What an image gradient is and how it can be computed
- How edge detection is done
- What the Laplacian image is and how it is used in either edge detection or image sharpening