Hierarchical Modeling

Brian Curless
CSE 457
Spring 2016

Reading

Required:
¢ Angel, sections 8.1 - 8.6, 8.8

Optional:
¢ OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

* spheres
¢ cubes
¢ cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation
above?

MES AT

/\/\:T"\S

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two
cuboids, with the following 3 degrees of freedom:

() 2 2,0)

+ Base rotates about its vertical axis by

¢ Upper arm rotates in its xy-plane by ¢ (- - \
+ Lower arm rotates in its xy-plane by y o2
T (0,hy,) R,(F)

0
z z ‘Z/

[Angel, 2011]

(Note that the angles are set to zero in the figure; i.e., 8\
the parts are shown in their “default” positions.) >y

Q: What matrix do we use to transform the base? A
Q: What matrix for the upper arm? f‘)\\/ ((9\)_“0) h, D\ R’v 075\

Q: What matrix for the lower arm?

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Lower arm

From parts to model to viewer

Model or object space

> M model

World space

view

Eye or camera space

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M, M model, M view;

main ()

{

M view = compute_view_transform() ;

robot_arm() ;

robot_arm()
{
M _model = R _y(theta);
M = M view*M model;
base() ;
M model = R_y(theta)*T(0,hl,0)*R_z(phi);
M = M view*M model;
upper_arm() ;
M model = R_y(theta)*T(0,hl,0)
*R_z (phi) *T (0,h2,0) *R_z (psi) ;
M = M view*M model;

lower_arm() ;

’ Y
Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it /in place by concatenating
matrices on the right:

Matrix M modelview;

main ()

{

M _modelview = compute_view_transform() ;
robot_arm() ;

robot_arm()
{
M modelview *= R_y(theta);
base() ;
M _modelview *= T(0,hl,0)*R_z(phi);
upper_arm() ;
M modelview *= T(0,h2,0)*R_z(psi);

lower_arm 0O

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main ()

{

glMatrixMode (GL_MODELVIEW) ;
Matrix M = compute_view_xform();
glLoadMatrixf(M);

robot_arm() ;

robot_arm()

{
glRotatef(theta, 0.0, 1.0, 0.0);
base() ;
glTranslatef(0.0, hl, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);
lower_arm() ;
glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm() ;

Hierarchical modeling
Hierarchical models can be composed of instances
using trees or DAGs: sk, @

Chassis |

RR |LF)
LR

R-F /]
Ly v 4

Right-front

wheel

Right-rear Left-front Left-rear \EI
wheel wheel wheel

+ edges contain geometric transformations
* nodes contain geometry (and possibly drawing

A8
e

attributes) World

How might we
draw the tree for
the robot arm?

9 10
A complex example: human figure Human figure implementation, OpenGL
—‘ figure ()
{
‘ torso() ;

glPushMatrix () ;

U glTranslate(...);
» 7 glRotate(...)’
head() ;
glPopMatrix() ;

’ ‘ ‘ glPushMatrix() ;

: M, \\\\\ glTranslate(...);
M M/ N\ M glRotate(...);
“ X L Lef: o [Rizhe left_upper_arm();
Head | Lef;;;lsper ngl":;;pper I:gppe g le—;pper glPushMatrix () ;
lM;,,‘ er/n le M,y gifranslate(...);
Y glRotate(...)’
Lef;lr?]wer Right-lower| Leftl-lower Righlt-lower left lower_arm();
C
arm g eg glPopMatrix() ;
I Mty glPopMatrix () ;
[] PL
}
Q: What's the most sensible way to traverse this tree?
7){1'017\ ?{3" tv/ s ek
11 12

Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ Alot of skill on the part of the animator

0 10

-

L XX] '
4 15 3 5
13 14
Scene graphs Summary
The idea of hierarchical modeling can be extended to Here’s what you should take home from this lecture:
an entire scene, encompassing:
p 9 ¢ All the boldfaced terms.

+ many different objects + How primitives can be instanced and composed

+ lights to create hierarchical models using geometric

¢ camera position transforms.

L ¢ How the notion of a model tree or DAG can be
This is called a scene tree or scene graph. .

extended to entire scenes.
+ How OpenGL transformations can be used in
hierarchical modeling.
+ How keyframe animation works.
Object1
‘
Materials1
Object2
Object3
15 16

