Hierarchical Modeling

Brian Curless
CSE 457
Spring 2016

Reading

Required:
+ Angel, sections 8.1 - 8.6, 8.8

Optional:

* OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

¢ spheres
¢ cubes
¢ cylinders

These symbols are instanced using an instance
transformation.

S Q R T i]
O ¥ Sl — & —
Q: What is the matrix for the instance transformation

above?
MES BT

M=TRNS

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two
cuboids, with the following 3 degrees of freedom:

Rﬂ(.\ Q%(\ (IZ}/(S

+ Base rotates about its vertical axis by &

¢ Upper arm rotates in its xy-plane by ¢ — (- \
+ Lower arm rotates in its xy-plane by o7

T (o,hy, 00 R LY \/

n, Lower arm
Z y

Upper ar

Base

[Angel, 2011]
(Note that the angles are set to zero in the figure; i.e., 8\
the parts are shown in their “default” positions.) NE
Q: What matrix do we use to transform the base? A O\M
Q: What matrix for the upper arm? (I)\\/ (6_“0 Vb DYR% L¢\

Q: What matrix for the lower arm? o~

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Upper arm

Base

From parts to model to viewer

-
%J

Model or object space

{(Mmodel
Y
World space
T
Z,,
M iew
\j
Ye Eye or camera space
/ ~

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M, M model, M view;

main ()

{

M view = compute view_ transform();

robot_arm() ;

robot_arm()
{
M model = R _y(theta);
M =M view*M model;
base () ;
M model = R _y(theta)*T(0,hl,0)*R _z(phi);
M =M view*M model;
upper_arm() ;
M model = R y(theta)*T(0,hl,0)
*R_z (phi)*T(0,h2,0)*R_z(psi);
M =M view*M model;

lower_arm() ;

} /
Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it /n p/ace by concatenating
matrices on the right:

Matrix M_modelview;

main ()

{

M modelview = compute view_transform() ;

robot_arm() ;

robot_arm()

{

M modelview *= R y(theta);

base () ;

M modelview *= T(0,hl,0)*R _z(phi);

upper_arm() ;

M modelview *= T(0,h2,0)*R _z(psi);

lower_arm();

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main ()

{

glMatrixMode (GL_MODELVIEW) ;
Matrix M = compute view xform();
glLoadMatrixf(M) ;

robot_arm() ;

robot_arm()

{
glRotatef(theta, 0.0, 1.0, 0.0);
base () ;
glTranslatef(0.0, hl, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);
lower arm() ;
glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm() ;

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs: A @

Chassis

/‘A 'S ?/"\ LR
s - Y \
Right-front | = Right-rear | Left-front Left-rear
wheel wheel wheel wheel

Chassis

4 \
R-R |L-F|
R-F\ ,/L-R
Wheel

¢ edges contain geometric transformations

+ nodes contain geometry (and possibly drawing

attributes) Juvs @
A/

—

How might we
draw the tree for
the robot arm?

10

A complex example: human figure

LY

Left-upper
leg

Right-upper
leg

Left-lower

Right-lower
arm

Left-lower

leg

Right-lower
leg

Q: What's the most sensible way to traverse this tree?

“Dor)ﬁ\ {{f%‘/ W/ skek

11

Human figure implementation, OpenGL

figure ()
{
torso() ;
glPushMatrix() ;
glTranslate(...);
glRotate(...);
head() ;
glPopMatrix() ;
glPushMatrix() ;
glTranslate(...);
glRotate(...);
left upper_arm();
glPushMatrix() ;
glTranslate(...);
glRotate(...);
left lower arm();
glPopMatrix() ;
glPopMatrix() ;

12

Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

13

Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ A lot of skill on the part of the animator

0 1+ 60

14

Scene graphs

The idea of hierarchical modeling can be extended to

an entire scene, encompassing:

+ many different objects

¢ lights

¢ camera position

This is called a scene tree or scene graph.

Scene

T

Object3

Camera Xform1
Light1 Light2 Objecﬂ\‘
/ Geometry1
)’(;)rmz Xform3 Materials1
Object2 &

15

Summary

Here’s what you should take home from this lecture:

*

*

All the boldfaced terms.

How primitives can be instanced and composed
to create hierarchical models using geometric
transforms.

How the notion of a model tree or DAG can be
extended to entire scenes.

How OpenGL transformations can be used in
hierarchical modeling.

How keyframe animation works.

16

