Reading

Required:
¢ Angel 3.1,3.7-3.11

. . Furth ding:
Affine transformations urtherreading
+ Angel, the rest of Chapter 3
+ Foley, et al, Chapter 5.1-5.5.

Brian Curless + David F. Rogers and J. Alan Adams, Mathematical
CSE 457 Elements for Computer Graphics, 2" Ed.,
Spring 2016 McGraw-Hill, New York, 1990, Chapter 2.
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Geometric transformations Vector representation
Geometric transformations will map points in one We can represent a point, p = (x, y), in the plane or p = (x, y;, 2)
space to points in another: (x; y; z’) =f(x y, 2). in 3D space
These transformations can be very simple, such as o a5 column vectors X
scaling each coordinate, or complex, such as non- y
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.




Canonical axes

Vector length and dot products
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Vector cross products Representation, cont.
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We will use column vectors.




Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:
x'| |a bl x
y'| L dly

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements g, b, ¢ d...

Identity

Suppose we choose a=d=17, b=c=0:

+ Gives the identity matrix:
%' 10 rl <=
I v Lo 1l v

+ Doesn't move the points at all
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Scaling Refleckion  (meror)
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Shear

Now let's leave a=d'=7and experiment with b...

The matrix

gives:

Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:
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Effect on unit square, cont. Rotation
Observe: From our observations of the effect on the unit square,
. X it should be easy to write down a matrix for “rotation
¢ Origin invariant under M about the origin”:
* M can be determined just by knowing how the ,
corners (1,0) and (0,1) are mapped l
* a and d give x-and y~scaling
¢ b and ¢ give x- and y~shearing 1
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

+ Scaling

+ Rotation

+ Reflection
+ Shearing

Q: What important operation does that leave out?
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

HEE

Adding the third “w"” component puts us in
homogenous coordinates.

And then transform with a 3 x 3 matrix:
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Anatomy of an affine matrix Rotation about arbitrary points top ~smer 0
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The addition of translation to linear Until now, we have only considered rotation about the ° o |
transformations gives us affine transformations. origin. .
In matrix form, 2D affine transformations always a b h\(x With homogeneous coordinat$s, you can specify a rotation, T H’/‘J*\/S
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0' Points and vectors

‘{f Vectors have an additional coordinate of w= 0. Thus, a
change of origin has no effect on vectors.

/ Q Q: What happens if we multiply a vector by an affine
e

matrix?
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D
ones.

For example, scaling:
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Translation in 3D Rotation in 3D (cont’d)
t
/ These are the rotations about the canonical axes:
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Shearing in 3D

Shearing is also more complicated. Here is one
example:
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We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine
transformations:

¢ Lines map to lines
+ Parallel lines remain parallel L

+ Midpoints map to midpoints (in fact, ratios are
always preserved)
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Affine transformations in OpenGL Summary
What to take away from this lecture:
OpenGL maintains a“modelview” matrix that holds
the current transformation M. ¢ Allthe names in boldface.
+ How points and transformations are represented.
The modelview matrix is applied to points (usually
vertices of polygons) before drawing. + How to compute lengths, dot proc}ucts, and cross
products of vectors, and what their geometrical
It is modified by commands including: meanings are.
+ glLoadTdentity () Ml + What all the elements of a 2 x 2 transformation
~ set M to identity matrix do and how these generalize to 3 x 3
transformations.
+ glTranslatef(t,, t,, t,) M« MT + What homogeneous coordinates are and how
- translate by (t,, t,, t,) they work for affine transformations.
+ How to concatenate transformations.
¢ glRotatef (8, x, y, z) M« MR + The mathematical properties of affine
- rotate by angle 6 about axis (x, y, z) transformations.
¢ glScalef(s,, s, s,) M <~ MS
- scale by (s, s,/ 5,)
Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.
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