
Computer Graphics  Instructor: Brian Curless
CSE 457 Spring 2016
 
 
 
 
 
 
 
 

Homework #2 
 

Shading, Projections, Texture Mapping,  

Ray Tracing, and Bezier Curves 
 
 
 
 
 

 
Assigned:  Thursday, May 5th  

 
Due:   Thursday, May 19th  

                 at the beginning of class 
 
 
 
Directions: Please provide short written answers to the following questions on your own paper.  
Feel free to discuss the problems with classmates, but please follow the Gilligan’s Island rule*, 
answer the questions on your own, and show your work. 
 
Late policy: The homework is due at the beginning of class.  Late assignments are marked down 
at a rate of 25% per day (not per lecture), meaning that if you fail to turn in an assignment on 
time it is worth 75% for the first 24 hours after the deadline, 50% for the next 24 hours, etc. 
 
Please write your name on your assignment! 
 
 
 
 
* The Gilligan's Island Rule: This rule says that you are free to meet with fellow student(s) and 
discuss assignments with them. Writing on a board or shared piece of paper is acceptable during 
the meeting; however, you should not take any written (electronic or otherwise) record away 
from the meeting. After the meeting, engage in a half hour of mind-numbing activity (like 
watching an episode of Gilligan's Island), before starting to work on the assignment. This will 
assure that you are able to reconstruct what you learned from the meeting, by yourself, using 
your own brain. 
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Problem 1. Blinn-Phong shading (16 Points) 
 
The Blinn-Phong shading model for a scene illuminated by global ambient light and a single directional 
light can be summarized by the following equation: 
 

Iphong = ke + kaIa + kd B IL (N·L) + ks B IL (N·H)+
ns 

 
Imagine a scene with one white sphere illuminated by white global ambient light and a single white 
directional light.  For sub-problems a) – f), describe – qualitatively, in words – the effect of each step on 
the shading of the object.  At each incremental step, assume that all the preceding steps have been applied 
first.  Assume that the directional light is oriented so that the viewer can see the shading over the surface, 
including diffuse and specular where appropriate. 
 

a) (2 points) The directional light is off.  How does the shading vary over the surface of the object? 
 

b) (2 points) Now turn the directional light on.  The specular reflection coefficient ks of the material 
is zero, and the diffuse reflection coefficient kd is non-zero.  How does the shading vary over the 
surface of the object? 

 
c) (2 points) Now translate the sphere straight toward the viewer.  What happens to the shading over 

the object? 
 

d) (2 points) Now increase the specular exponent ns.  What happens? 
 

e) (2 points) Now increase the specular reflection coefficient ks of the material to be greater than 
zero.  What happens? 

 
f) (2 points) Now decrease the specular exponent ns.  What happens? 

 
g) (2 points) Suppose we assume that the viewing direction V is constant regardless of which pixel it 

passes through.  What does this imply about the viewer? 
 
h) (2 points) Assuming that L and V are constant everywhere, then with a little pre-computation, it is 

possible to shade faster (i.e., using fewer operations) using the Blinn-Phong model above, than it 

is to shade using the Phong model, which bases the specular component on (V·R)+
ns.  Why would 

Blinn-Phong be faster than Phong in this situation?  Explain. 
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Problem 2.  Environment mapping (20 points) 
 
One method of environment mapping (reflection mapping) involves using a “gazing ball” to capture an image of 
the surroundings. The idea is to place a chrome sphere in a real environment, take a photograph of the sphere, and 
use the resulting image as an environment map.  Each pixel that “sees” a point on the chrome sphere maps to a ray 
with direction determined by the reflection through the chrome sphere; the pixel records the color of a point in the 
surroundings along that reflected direction.  You can turn this around and construct a lookup table that maps each 
reflection direction to a color.  This table is the environment map, sometimes called a reflection map. 
 
Let’s examine this in two dimensions, using a “gazing circle” to capture the environment around a point.   Below 
is a diagram of the setup. In order to keep the intersection and angle calculations simple, we will assume that each 
viewing ray V that is cast through the projection plane to the gazing circle is parallel to the z-axis. The circle is of 
radius 1, centered at the origin. 

 
a) (5 points) If the x-coordinate of the view ray is xv, what are the (x,z) coordinates of the point at which the 

ray intersects the circle? What is the unit normal vector at this point? 

b) (3 points) What is the angle between the view ray V and the normal N as a function of xv?  Note that we 
will treat this as a “signed angle.”  In the figure above, the angle   between V and N is positive.  If the 
viewing ray hit the lower half of the circle (xv is negative), then  would be negative. 

c) (5 points) Note that the (signed) angle φ between the view ray V and the reflection direction R is equal to 
2, where  is the angle between V and the normal N.  Plot φ versus xv. In what regions of the image do 
small changes in the xv coordinate result in large changes in the reflection direction? 

d) (4 points) We can now use the photograph of the chrome circle to build an environment map (for a 2D 
world); we store an array of colors drawn from the photograph, regularly sampled across reflection 
angles.  When ray tracing a new chrome object, we compute the mirror reflection angle when a ray 
intersects the object, and then just look up the color from the environment map.  (If the computed 
reflection angle lands between angles stored in the environment map, then you can use linear interpolation 
to get the desired color.)  Would we expect to get exactly the same rendering as if we had placed the 
object into the original environment we photographed?  Why or why not?  In answering the question, you 
can neglect viewing rays that do not hit the object, assume that the new object is not itself a chrome circle, 
and assume that the original environment is some finite distance from the chrome circle that was 
originally photographed. 

e) (3 points) Suppose you lightly sanded the chrome circle before photographing it, so that the surface was 
just a little rough.   

 What would the photograph of the circle look like now, compared to how it looked before roughening 
its surface?   

 If you used this image as an environment map around an object, what kind of material would the 
object seem to made of? 

 If you did not want to actually roughen the object, what kind of image filter might you apply to the 
image of the original chrome circle to approximate this effect? 
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Problem 3: Projections  (18 points) 
 
The apparent motion of objects in a scene can be a strong cue for determining how far away they are.  In 
this problem, we will consider the projected motion of points and line segments and their apparent 
velocities as a function of initial depths. 
 
a) (6 points) Consider the projections of two points, Q1 and Q2, on the projection plane PP, shown 

below.  Q1 and Q2 are described in the equations below.  They are moving parallel to the projection 
plane, in the positive y-direction with speed v.   
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Compute the projections q1 and q2 of points Q1 and Q2, respectively.  Then, compute the velocities, 

1 /dq dt  and 2 /dq dt , of each projected point in the image plane.  Which appears to move faster?  
Show your work. 

 
b) (8 points) Consider the projections of two vertical line segments, S1 and S2, on the projection plane 

PP, shown below.  S1 has endpoints, Q1
u and Q1

b.  S2 has endpoints, Q2
u and Q2

b.  The line segments 
are moving perpendicular to the projection plane in the positive z-direction with speed v.  

 

    
1

1

0

1
( )

1

uQ t
z vt

 
 
 
 
 
 

 
2

2

0

1
( )

1

uQ t
z vt

 
 
 
 
 
 

 

 

    
1

1

0

1
( )

1

bQ t
z vt

 
  
 
 
 

 
2

2

0

1
( )

1

bQ t
z vt

 
  
 
 
 

 

 
                             0 > z1 > z2 
 

Compute the projected lengths, l1 and l2, of the line segments.  Then, compute the rates of change, 

1 /dl dt  and 2 /dl dt , of these projected lengths.  Are they growing or shrinking?  Which projected line 
segment is changing length faster?  Show your work. 
 

c) (4 points) Suppose now we replace the perspective camera in (a) and (b) with an orthographic camera.  
Which point, if any, in (a) would appear to move faster?  Will the line segments in (b) appear to grow 
or shrink, and if so, which would change faster?  Justify your answers in words or with equations. 
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Problem 4.  Ray intersection with implicit surfaces (23 points) 
 
There are many ways to represent a surface.  One way is to define a function of the form 0),,( zyxf .  Such a 
function is called an implicit surface representation.  For example, the equation 

0),,( 2222  rzyxzyxf  defines a sphere of radius r.  Suppose we wanted to ray trace a “quartic 
chair,” described by the equation: 
 

2 2 2 2 2 2 2 2 2( ) ( ) 2 ( ) 2 0x y z ak b z k x z k y                

 
On the left is a picture of a quartic chair, and on the right is a slice through the y-z plane. 
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For this problem, we will assume a = 0.95, b = 0.8, and k = 5. 

 
In the next problem steps, you will be asked to solve for and/or discuss ray intersections with this primitive.  
Performing the ray intersections will amount to solving for the roots of a polynomial, much as it did for 
sphere intersection.  For your answers, you need to keep a few things in mind: 
 

 You will find as many roots as the order (largest exponent) of the polynomial. 
 
 You may find a mixture of real and complex roots.  When we say complex here, we mean a number that 

has a non-zero imaginary component. 
 
 All complex roots occur in complex conjugate pairs.  If A + iB is a root, then so is A – iB. 
 
 Sometimes a real root will appear more than once, i.e., has multiplicity > 1.  Consider the case of sphere 

intersection, which we solve by computing the roots of a quadratic equation. A ray that intersects the 
sphere will usually have two distinct roots (each has multiplicity = 1) where the ray enters and leaves the 
sphere.  If we were to take such a ray and translate it away from the center of the sphere, those roots get 
closer and closer together, until they merge into one root.  They merge when the ray is tangent to the 
sphere.  The result is one distinct real root with multiplicity = 2. 

 

a) (8 points) Consider the ray dtP  , where  000P  and  0 0 1d .  Solve for all values of t 

where the ray intersects the quartic chair (including negative values of t).  Which value of t represents the 
intersection we care about for ray tracing?  In the process of solving for t, you will be computing the roots 
of a polynomial.  How many distinct real roots do you find?  How many of them have multiplicity > 1?  
How many complex roots do you find? 
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Problem 4 (cont’d)   
 

b) (15 points) What are all the possible combinations of roots, not counting the one in part (a)?  For each 
combination, describe the 4 roots as in part (a), draw a ray in the y-z plane that gives rise to that 
combination, and place a dot at each intersection point. There are five diagrams below that have not been 
filled in.  You may not need all five; on the other hand, if you can actually think of more distinct cases than 
spaces provided, then we might just give extra credit.  The first one has already been filled in.  (Note: not 
all conceivable combinations can be achieved on this particular implicit surface.  For example, there is no 
ray that will give a root with multiplicity 4.)  Please write on this page and include it with your 
homework solution. You do not need to justify your answers.   

 
 
 

              
 
   # of distinct real roots:  4                   # of distinct real roots:            # of distinct real roots: 
 
   # of real roots w/ multiplicity > 1:  0         # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 
 
   # of complex roots:   0            # of complex roots:            # of complex roots: 
 
 
 
 
 

              
  
   # of distinct real roots:                     # of distinct real roots:            # of distinct real roots: 
 
   # of real roots w/ multiplicity > 1:           # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 
 
   # of complex roots:             # of complex roots:            # of complex roots: 
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Problem 5. Bezier splines (23 points) 
 
Consider a Bezier curve segment defined by three control points V0, V1, and V2.  
 

a) (3 points) What is the polynomial form of this curve, when written out in the form 
Q(u) = An un + An-1 un-1 + … + A0, where n is determined by the number of control points.  The 
coefficients A0, …, An should be substituted in the polynomial equation with expressions that depend on 
the control points V0, V1, and V2.  You may start with recursive subdivision or with the summation over 
Bernstein polynomials provided in lecture.  Either way, show your work. 
 

b) (2 points) What is the first derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’(0) and 
Q’(1))?  Show your work. 

 
c) (2 points) What is the second derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’’(0) and 

Q’’(1))?  Show your work. 
 
d) (5 points) To create a spline curve, we can stitch together consecutive Bezier curves.  In this problem, we 

can add control points W0, W1, and W2.  What constraints must be placed on W0, W1, and/or W2 so that, 

when combined with V0, V1, and V2, the resulting spline curve is C1 continuous at the joint between the 
Bezier segments?  Write out equations for W0, W1, and/or W2 in terms of V0, V1, and/or V2.  (It may be 
that not all of the W control points are constrained, in which case you would have fewer than three 
equations.)  Show your work.  Draw a copy of the control polygon below (shown at the bottom of the 
page) and place all constrained vertices exactly, and unconstrained vertices wherever you like, and then 
sketch the spline curve. 

 

e) (5 points) Suppose we wanted to make the spline curve C2 continuous at the joint between the Bezier 
segments.  Now what constraints must be placed on W0, W1, and W2?  Write out equations for W0, W1, 
and/or W2 in terms of V0, V1, and/or V2.  (It may be that not all of the W control points are constrained, in 
which case you would have fewer than three equations.)  Show your work. Draw a copy of the control 
polygon below (shown at the bottom of the page) and place all constrained vertices exactly, and 
unconstrained vertices wherever you like, and then sketch the spline curve. 

 

f) (3 points) Is it possible to achieve C3 continuity with this spline?  Explain. 
 
g) (3 points) Suppose again that the control points are in two dimensions, but now V1 = V2 = W0 = W1.  

Think of this as sliding V2 over on top of V1 in the figure below, then placing W0 and W1 on top of those 
points, and then adding W2 at some arbitrary position, somewhere to the right but not collinear with V0 
and V1.  Sketch the resulting curve.  Will this curve be C1?  Justify your answer. 
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