

 Checking out, building, and using the sample
solution

 Part 1: Surface of Revolution
 Part 2: Hierarchical Modeling
 Part 3: Blinn-Phong Shader
 Part 4: Custom Shader(s)

 Go to the Modeler course page for detailed
check-out directions.

 Repository path:

 svn+ssh://Your CSE
NetID@attu.cs.washington.edu/projects/instr/15
wi/cse457/modeler/Your Group ID/source

 Go to your project folder
 Double-click the .vcxproj file
 Configuration menu next to green arrow

 Debug – lets you set breakpoints

 Release – for turn-in

 Pick Debug, then click the green arrow next
to it to build and run your project (Hotkey: F5)

 Let us know if it doesn’t build!

List of
Controls

Control
Groups View of your model

Move the camera by dragging
the mouse while holding down:

Left button: rotate the
view like a huge trackball.

Right button (or left button +
CTRL): zoom in/out

Middle button (or left button +
SHIFT): pan

 Partner A: Modeling

 Part 1: Surface of
revolution

 Part 2: Hierarchical
Modeling

 Partner B: Shading

 Part 3: Blinn-Phong
Shader

 Part 4: Custom Shader(s)

 NOTE: this division of
labor is just a
suggestion!

 You will write OpenGL code to
draw a surface by rotating a
curve.

 Each vertex must have an
appropriate:
 Texture coordinate pair
 Vertex normal
 Position

 Replace code for
drawRevolution() in
modelerdraw.cpp
 The divisions variable determines

number of slices
 Load new curve with File->”Load

Revolution Curve File”

 Drawing a curve

 Using the curve editor
tool

 Start by left click with
ctrl key on

 Save dense point
samples into .apts file

 Load point samples in
modeler

 A curve file is basically a .txt
file with a list of x,y
coordinates for control points

 .apts

 Densely sampled points on a
curve

 .cfg: curve configuration file

 Row 1: sample density

 Row 2: curve interpolation
method

 Divide the surface into
“bands” by longitude

 Compute vertex positions
and normals

 Using sin(), cos() in c++ code

 See lecture notes for normal
computation

 Connect the dots with
OpenGL triangles

 Use glDrawElements
with GL_TRIANGLES
(required!)

 The order of vertices
matters

 Right-hand rule

 It’s okay to use glBegin(), glEnd() for testing shapes,
but don’t use them in the final submitted code

 Don’t use GL_QUAD_STRIP or
GL_TRIANGLE_STRIP in the final submission,
either.

 In the submitted code, you need to build a triangle
mesh and send it to OpenGL

 Using glDrawElements with GL_TRIANGLES

This is an overly simplified example of

drawing a plane using glDrawElements.

The plane consists of two connecting

triangles and the normal vectors of all

vertices are pointing up.

// preparing the data for the vertices positions

GLfloat vertices[12] = { 0,0,0, 0,0,-1, 1,0,0, 1,0,-1 };

// normal directions

GLfloat normals[12] = {0,1,0, 0,1,0, 0,1,0, 0,1,0};

// texture coordinate

GLfloat texture_uv[8] = {0,0, 0,1, 1,0, 1,1};

// vertex indices to form triangles, the order of the

vertices follows the right hand rule

GLuint indices[6] = { 1,0,2, 1,2,3 }

int indices_length = 6;

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_NORMAL_ARRAY);

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, vertices);

glNormalPointer(GL_FLOAT,0,normals);

glTexCoordPointer(2,GL_FLOAT,0,texture_uv);

glDrawElements(GL_TRIANGLES, indices_length

,GL_UNSIGNED_INT, indices);

glDisableClientState(GL_TEXTURE_COORD_ARRAY);

glDisableClientState(GL_NORMAL_ARRAY);

glDisableClientState(GL_VERTEX_ARRAY);

 See lecture slides for
texture mapping
 Basic idea: use longitude

and arc length (curve
distance) as texture
coordinates

 Each vertex must have an
appropriate:
 Vertex normal

 Position

 Texture Coordinate Pair
▪ u,v Є [0,1]

 You must make a
character with:

 2 levels of branching

 Something drawn at
each level

 Meaningful controls
▪ Otherwise, you will be

overwhelmed when you
animate it!

 You will need to:

 Extend the Model class

 Override the draw()
method

 Add properties that
Modeler users can control

 Give an instance of your
class to
ModelerUserInterface in
the main() function

 In sample.cpp, the
Scene class extends
Model

 draw() method draws
the green floor, sphere,
and cylinder, etc.

 Add and replace drawing
commands of your own

 You can use these draw
commands as OpenGL
references

 Modelerdraw.cpp
▪ drawBox

▪ drawCylinder

▪ drawRevolution

 Add a new radio
button for your scene
at the end of the list

 Kinds of properties (in
properties.h):

 BooleanProperty = checkbox

 RangeProperty = slider

 RGBProperty = color

 ChoiceProperty = radio buttons

 Need to add it to:

1. Class definition

2. Constructor

3. Property list

 See sample.cpp for example

 glEnable()/glDisable() changes state
 Once you change something, it stays that

way until you change it to something new
 OpenGL’s state includes:

 Current color

 Transformation matrices

 Drawing modes

 Light sources

 Just two of them: projection and modelview.
We’ll modify modelview.

 Matrix applied to all vertices and normals
 These functions multiply transformations:

glRotated(), glTranslated(), glScaled()
 Applies transformations in REVERSE order

from the order in which they are called.
 Transformations are cumulative. Since

they’re all “squashed” into one matrix, you
can’t “undo” a transformation.

 How do we get back to an earlier
transformation matrix?

 We can “remember” it

 OpenGL maintains a stack of matrices.

 To store the current matrix, call glPushMatrix().

 To restore the last matrix you stored, call
glPopMatrix().

 Draw the body
 Use glPushMatrix() to

remember the current
matrix.

 Imagine that a matrix
corresponds to a set of
coordinate axes:
 By changing your

matrix, you can move,
rotate, and scale the
axes OpenGL uses.

 Apply a transform:

 glRotated()

 glTranslated()

 glScaled()

 Here, we apply
glTranslated(1.5,2,0)

 All points translated 1.5
units left and 2 units up

 It’s as if we moved our
coordinate axes!

 Draw an ear.

 This ear thinks it was
drawn at the origin.

 Transformations let us
transform objects
without changing their
geometry!

 We didn’t have to edit
that ear’s drawing
commands to transform
it

 Call glPopMatrix() to
return to the body’s
coordinate axes.

 To draw the other ear,
call glPushMatrix()
again…

 Apply another
transform…

 Where will the ear be
drawn now?

 Draw the other ear

 Then, call
glPopMatrix() to return
to the body’s “axes”

 Technically, you don’t
need to if that second
ear is the last thing you
draw.

 But what if you wanted
to add something else to
the body?

 Make sure there’s a
glPopMatrix() for every
glPushMatrix()!

 You can divide your
draw() function into a
series of nested
methods, each with a
push at the beginning
and a pop at the end.

 Your scene must have
two levels of branching
like in this diagram.
 Circles are objects

 Arrows are
transformations

 Call glPushMatrix() for
green, so you can draw
orange after drawing red
 Do the same for orange

 You must draw
something at each level.

 Needs to control multiple aspects of your
model.

 Example: Rotate multiple joints at once

 Don’t get too complicated!

 Wait for Animator in four weeks!

 We provide a
directional light shader
in OpenGL Shading
Language (GLSL)

 You must extend it to
support point lights.

 Files to edit:

 shader.frag – your
fragment shader

 shader.vert – your vertex
shader

 modeler_solution.exe
in your project folder

 Loads your shader.frag
and shader.vert.

 Also contains our
sample shaders.

 Use radio buttons to
compare with sample
solution

Choose shader here

 gl_LightSource[i].position.xyz – the position
of light source i.

 gl_FrontLightProduct[i] – object that stores
the product of a light’s properties with the
current surface’s material properties:

 Example: gl_FrontLightProduct[i].diffuse ==
gl_FrontMaterial.diffuse *
gl_LightSource[i].diffuse

 Anything you want!
 Can earn extra credit!
 Ask TA’s for estimated extra credit value of an option.
 See the OpenGL orange book in the lab for details +

code.
 Can still use sample solution to test (depending on

complexity)

 Warnings
 Don’t modify any files except your model file and the

required modifications

 Or, your model might not work in Animator (project 4)

 Make sure that your repository works by:
 Checking it out
 Building it
 Tweaking something
 Committing

 Do this on each work environment you plan to
use, even if you aren’t going to start work yet:
 Lab machines
 Your home computer
 The sooner we know of a problem, the sooner we can

fix it.

 In general, never put anything besides source
code into source control:
 Debug and Release folders
 Modeler.suo
 Modeler.ncb
 *.user files

 DO put source files (*.cpp, *.h, *.vcproj, image
files, etc.) in the repository
 Make sure you both add AND commit the files.
 TortoiseSVN: when you commit, make sure all the

files you added have a checkmark.

THINGS TO DO

 Partner A: Modeling
 Part 1: Surface of revolution

 Part 2: Hierarchical Modeling

 Partner B: Shading
 Part 3: Blinn-Phong Shader

 Part 4: Custom Shader(s)

 You don’t have to divide
work up this way!

WARNINGS

 Don’t modify any files
except your model file and
the required modifications
 Or, your model might not

work in Animator

 Make sure you can check
out, commit, and build!

 Try adjusting the sample model

 Let us know if you have problems

 COMMIT BEFORE LOGOFF!

 Your files in C:\User\... will go away when you log
out, due to Deep Freeze!

