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Reading

Required:

 Angel chapter 5.

Optional:

 OpenGL red book, chapter 5.
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Basic 3D graphics

With affine matrices, we can now transform virtual 3D 
objects in their local coordinate systems into a global 
(world) coordinate system:

To synthesize an image of the scene, we also need to 
add light sources and a viewer/camera:

M1

M2
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To create an image of a virtual scene, we need to 
define a camera, and we need to model lighting  and 
shading.  For the camera, we use a pinhole camera.

The image is rendered onto an image plane (usually 
in front of the camera).

Viewing rays emanate from the center of projection
(COP) at the center of the pinhole.

The image of an object point P is at the intersection of 
the viewing ray through P and the image plane.

But is P visible?  This the problem of hidden surface 
removal (a.k.a., visible surface determination).  We’ll 
consider this problem later.

Pinhole camera

[Angel, 2011]
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Shading

Next, we’ll need a model to describe how light 
interacts with surfaces.

Such a model is called a shading model.

Other names:

 Lighting model
 Light reflection model
 Local illumination model
 Reflectance model
 BRDF
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An abundance of photons

Given the camera and shading model, properly determining the right color at each pixel is extremely 
hard. Look around the room.  Each light source has different characteristics.  Trillions of photons are 
pouring out every second.

These photons can:

 interact with molecules and 
particles in the air 
(“participating media”)

 strike a surface and
• be absorbed
• be reflected (scattered)
• cause fluorescence or 

phosphorescence.
 interact in a wavelength-

dependent manner
 generally bounce around and 

around
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Approximation of reality:
Phong and Blinn-Phong illumination 
models.

They have the following characteristics:

 not physically correct
 gives a “first-order” approximation to physical 

light reflection
 very fast
 widely used

We will assume a local illumination model:
light->surface->viewer 

No interreflections, no shadows. 



8

Setup…

Given:

 a point P on a surface visible through pixel p
 The normal N at P
 The lighting direction, L, and (color) intensity, IL, 

at P
 The viewing direction, V, at P
 The shading coefficients at P

Compute the color, I,  of pixel p.

Assume that the direction vectors are normalized:

  N L V 1
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Our lighting model includes the 
following components

Surface color  =  

Emissive  +  

Ambient   +  

Diffuse     + 

Specular 

Next we will talk about each of these in more detail... 
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Emissive 

The simplest thing you can do is…

Assign each polygon a single color:

where

 I is the resulting intensity
 ke is the emissivity or intrinsic shade associated 

with the object

This has some special-purpose uses, like to represent 
glowing objects.  But not really good for drawing a 
scene. For example: light bulb can have its own color. 

[Note: ke is omitted in Angel.]

eI = k
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Ambient 

Let’s make the color at least dependent on the overall 
quantity of light available in the scene:

 ka is the ambient reflection coefficient.
• really the reflectance of ambient light
• “ambient” light is assumed to be equal in all 

directions
 ILa is the ambient light intensity.

Physically, what is “ambient” light?

[Note: Angel uses  La instead of ILa.]

e a LaI k k I 
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Wavelength dependence

Really, ke, ka, and ILa are functions over all 
wavelengths .

Ideally, we would do the calculation on these 
functions.  For the ambient shading equation, we 
would start with:

then we would find good RGB values to represent 
the spectrum I().

Traditionally, though, ka and ILa are represented as 
RGB triples, and the computation is performed on 
each color channel separately:

  a LaI = k I( ) ( ) ( )

R R R
a La

G G G
a La

B B B
a La

I = k  I
I = k  I

I = k  I



13

Let’s examine the ambient shading model:

 objects have different colors
 we can control the overall light intensity

• what happens when we turn off the lights?
• what happens as the light intensity increases?
• what happens if we change the color of the lights?

So far, objects are uniformly lit.

 not the way things really appear
 in reality, light sources are localized in position or 

direction

Diffuse, or Lambertian reflection will allow reflected 
intensity to vary with the direction of the light.
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Our lighting model includes the 
following components

Surface color  =  

Emissive +  

Ambient +  

Diffuse(L)     + 

Specular(L,V) 
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Our lighting model includes the 
following components

Surface color  =  

Emissive +  

Ambient +  

For each light L:

Diffuse(L)     + 

Specular(L,V) 
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Intro to specular and diffuse reflection 
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The law of reflection 

Specular reflection: 

Smooth surface causes reflected rays to 
travel in the same direction
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Specular reflection
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The surface is so smooth in a calm lake 
that all the reflected rays bounce off in 
the same direction
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Ripples because of wind causes rough 
surface => reflected rays travel in 
different directions 
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Most everyday objects have diffuse 
reflection because of tiny roughness of 
the surface
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Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces, like 
latex paint, or chalk.

These diffuse or Lambertian reflectors reradiate light 
equally in all directions.

Picture a rough surface with lots of tiny microfacets.
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Diffuse reflectors

…or picture a surface with little pigment particles 
embedded beneath the surface (neglect reflection at 
the surface for the moment):

The microfacets and pigments distribute light rays in 
all directions.

Embedded pigments are responsible for the 
coloration of diffusely reflected light in plastics and 
paints.

Note: the figures above are intuitive, but not strictly 
(physically) correct.
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Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does not 
depend on the direction of the viewer.  The incoming 
light, though, does depend on the direction of the 
light source:
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Diffuse reflection 

The incoming energy is proportional to , giving 
the diffuse reflection equations:

where:

 kd is the diffuse reflection coefficient
 IL is the (color) intensity of the light source
 N is the normal to the surface (unit vector)
 L is the direction to the light source (unit vector)
 B prevents contribution of light from below the 

surface:

[Note: Angel uses  Ld instead of IL and f instead of B.]

_____B

B

e a La d L

e a La d L

I = k + k I + k I

= k + k I + k I (        )

1 if 

0 if 

 
  

B =
N L 0
N L 0
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Our lighting model includes the 
following components

Surface color  =  

Emissive +  

Ambient +  

For each light L:

Diffuse(L)     + 

Specular(L,V) 
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Specular reflection

Specular reflection accounts for the highlight that 
you see on some objects.

It is particularly important for smooth, shiny surfaces, 
such as:

 metal
 polished stone
 plastics
 apples
 skin

Properties:

 Specular reflection depends on the viewing 
direction V.  

 For non-metals, the color is determined solely by 
the color of the light.

 For metals, the color may be altered (e.g., brass)
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Specular reflection “derivation”

For a perfect mirror reflector, light is reflected about N, 
so

For a near-perfect reflector, you might expect the 
highlight to fall off quickly with increasing angle .

Also known as:

 “rough specular” reflection
 “directional diffuse” reflection
 “glossy” reflection

if 

0 otherwise
LII


 


V R
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Phong specular reflection

One way to get this effect is to take (R·V), raised to a 
power ns.

As ns gets larger,

 the dropoff becomes {more,less} gradual
 gives a {larger,smaller} highlight
 simulates a {more,less} mirror-like surface

Phong specular reflection is proportional to:

where (x)+  max(0, x).
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosns φ

φ

ns = 1

ns = 128

specular B R V snI ( )
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Blinn-Phong specular reflection

A common alternative for specular reflection is the 
Blinn-Phong model (sometimes called the modified 
Phong model.)

We compute the vector halfway between L and V as:

Analogous to Phong specular reflection, we can 
compute the specular contribution in terms of (N·H), 
raised to a power ns:

where, again, (x)+  max(0, x).

 specular B N H snI ( )
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Blinn-Phong

The next update to the Blinn-Phong shading model is 
then:

where:

 ks is the specular reflection coefficient
 ns is the specular exponent or shininess
 H is the unit halfway vector between L and V, 

where V is the viewing direction.

[Note: Angel uses a instead of ns, and maintains a 
separate Ld and Ls, instead of a single IL.  This choice 
reflects the flexibility available in OpenGL.]





 

    

L L

L

B B

B

I I

I

H

H

s

s

e a La d s

e a La d s

n

n

I = k + k I + k + k

k + k I + k + k

( ) ( )

( ) ( )

N L N

N L N
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Directional lights

The simplest form of lights supported by renderers are 
ambient, directional, and point.  Spotlights are also 
supported often as a special form of point light.

We’ve seen ambient light sources, which are not really 
geometric.

Directional light sources have a single direction and 
intensity associated with them.

Using affine notation, what is the homogeneous 
coordinate for a directional light?
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Point lights

The direction of a point light sources is determined by 
the vector from the light position to the surface point.

Physics tells us the intensity must drop off inversely 
with the square of the distance:

Sometimes, this distance-squared dropoff is 
considered too “harsh.”  A common alternative is:

with user-supplied constants for a, b, and c.

Using affine notation, what is the homogeneous 
coordinate for a point light?

E - P
L =

E - P

r = E - P

atten
1

f  2a+ br + cr

atten
1

f  2r
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Spotlights
We can also apply a directional attenuation of a point 
light source, giving a spotlight effect.

A common choice for the spotlight intensity is:

where

 L is the direction to the point light.
 S is the center direction of the spotlight.
  is the angle between L and S
  is the cutoff angle for the spotlight
 e is the angular falloff coefficient

 
 

 
 
  



2
spot

 

0 otherwise

e

a br cr

L S
f =

         1Note:   cos ( )     cos .L S L S
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Additive lights

Since light is additive, we can handle multiple lights by 
taking the sum over every light.

Our equation is now:

This is the Blinn-Phong illumination model (for 
spotlights).

Which quantities are spatial vectors?  

Which are RGB triples?

Which are scalars?

 
   




  
 

j
j j

j

e

B
r r

L S
N H

s

e a La

n
L, j j d j s j2

j j j j j j

I = k + k I +

I k + k
a + b + c

N L
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Shading in OpenGL

The OpenGL lighting model allows you to associate 
different lighting colors according to material 
properties they  will influence.  

Thus, our original shading equation (for point lights):

becomes:

where you can have a global ambient light with 
intensity ILa in addition to having an ambient light 
intensity ILa,j associated with each individual light, as 
well as separate diffuse and specular intensities, ILd,j
and ILs,j, repectively.

     
  1

B
r r

N H
s

e a La

n
L, j j d j s j2 +

j j j j j j

I = k + k I +

I k + k
a + b + c

N L

     1
B

r r
s

e a La

n
a La, j j d Ld, j j s Ls, j j +2

j j j j j j

I = k + k I +

k I + k I + k I
a + b + c

( ) ( )N L N H
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Materials in OpenGL

The OpenGL code to specify the surface shading 
properties is fairly straightforward.  For example:

GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);  
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);  
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);  
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);  
glMaterialfv(GL_FRONT, GL_SHININESS, ns);

Notes: 

 The GL_FRONT parameter tells OpenGL that we 
are specifiying the materials for the front of the 
surface.  

 Only the alpha value of the diffuse color is used 
for blending.  It’s usually set to 1.
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Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is 
specified something like:

GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 }; 

GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 }; 
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 }; 
GLfloat a0[] = { 1.0 }; 
GLfloat b0[] = { 0.5 }; 
GLfloat c0[] = { 0.25 };
GLfloat S0[] = { -1.0, -1.0, 0.0 }; 
GLfloat beta0[] = { 45 };
GLfloat e0[] = { 2 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);
glLightfv(GL_LIGHT0, GL_AMBIENT, La0); 
glLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);
glLightfv(GL_LIGHT0, GL_SPECULAR, Ls0); 
glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);
glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);
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Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a 
scene.  This number is system-dependent. 

For directional lights, you specify a light direction, not 
position, and the attenuation and spotlight terms are 
ignored.

The directions of directional lights and spotlights are 
specified in the coordinate systems of the lights, not the 
surface points as we’ve been doing in lecture.
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3D Geometry in the 
Graphics Hardware Pipeline
Graphics hardware applies transformations to bring 
the objects and lighting into the camera’s coordinate 
system:

The geometry is assumed to be made of triangles, and 
the vertices are projected onto the image plane.
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Rasterization

After projecting the vertices, graphics hardware 
“smears” vertex properties across the interior of the 
triangle in a process called rasterization.

Smearing the z-values and using a Z-buffer will enable 
the graphics hardware to determine if a point inside a 
triangle is visible.  (More on this in another lecture.)

If we have stored colors at the vertices, then we can 
smear these as well.
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Let’s consider each channel separately:
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Shading the interiors of triangles

We will be computing colors using the Blinn-Phong
lighting model.

Let’s assume (as graphics hardware does) that we are 
working with triangles.

How should we shade the interiors of triangles?
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Shading with per-face normals

Assume each face has a constant normal:

For a distant viewer and a distant light source and 
constant material properties over the surface, how will 
the color of each triangle vary?
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Faceted shading (cont’d)

[Williams and Siegel 1990]
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Gouraud interpolation

To get a smoother result that is easily performed in 
hardware, we can do Gouraud interpolation.

Here’s how it works:

1. Compute normals at the vertices. 
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.
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Facted shading vs. Gouraud interpolation

[Williams and Siegel 1990]
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Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we 
can miss specular highlights.

2. We will encounter Mach banding (derivative 
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…
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Phong interpolation

To get an even smoother result with fewer artifacts, 
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.
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Gouraud vs. Phong interpolation

[Williams and Siegel 1990]
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Default pipeline: Gouraud interpolation

→ triangle1 2 3, ,i i iv v v

Default fragment processing:

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

attach cblinn-phong to vertex as “varying”
vi ← project v to image

blinn-phong shade with , , , , ,s sdc L V N k k n

determine lighting directionL
determine viewing directionV 

normalize( )eN n

Default vertex processing:

 blinn-phongcolor pc
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Vertex shader:
attach ne to vertex as “varying”
attach ve to vertex as “varying”
vi ← project v to image

Programmable pipeline: 
Phong-interpolated normals!

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

→ triangle1 2 3, ,i i iv v v

Fragment shader:

color shade with , , , , ,p p p
s sdL V N k k n

 normalize( )p
eN n

determine lighting directionL 
determine viewing directionV 



61

Choosing Blinn-Phong shading parameters

Experiment with different parameter settings.  To get 
you started, here are a few suggestions:

 Try ns in the range [0,100]
 Try ka + kd + ks < 1
 Use a small ka (~0.1)

ns kd ks

Metal large Small, color 
of metal

Large, color 
of metal

Plastic medium
Medium, 
color of 
plastic

Medium, 
white

Planet 0 varying 0
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BRDF

The diffuse+specular parts of the Blinn-Phong
illumination model are a mapping from light to 
viewing directions:

The mapping function fr is often written in terms of 
incoming (light) directions in and outgoing (viewing) 
directions out:

This function is called the Bi-directional Reflectance 
Distribution Function (BRDF).

Here’s a plot with in held constant:

BRDF’s can be quite sophisticated…

( , ()     or     )out outin inr rf f   

( , )outinrf  
in



     
   

  ( , )

L

L r

B

f

I

I

L V

L V

L V

s

d s

n

I = k + k( )N L N
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More sophisticated BRDF’s

Anisotropic BRDFs [Westin, Arvo, Torrance 1992]

[Cook and Torrance, 1982]

Artistics BRDFs [Gooch]
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Summary

You should understand  the equation for the Blinn-
Phong lighting model

 What is the physical meaning of each variable?
 How are the terms computed?
 What effect does each term contribute to the 

image?
 What does varying the parameters do?

You should also understand the differences between 
faceted, Gouraud, and Phong interpolated shading.

And you should understand how to compute the 
normal to a surface of revolution.


