
Shading

CSE 457
Winter 2015

2

Reading

Required:

 Angel chapter 5.

Optional:

 OpenGL red book, chapter 5.

3

Basic 3D graphics

With affine matrices, we can now transform virtual 3D
objects in their local coordinate systems into a global
(world) coordinate system:

To synthesize an image of the scene, we also need to
add light sources and a viewer/camera:

M1

M2

4

To create an image of a virtual scene, we need to
define a camera, and we need to model lighting and
shading. For the camera, we use a pinhole camera.

The image is rendered onto an image plane (usually
in front of the camera).

Viewing rays emanate from the center of projection
(COP) at the center of the pinhole.

The image of an object point P is at the intersection of
the viewing ray through P and the image plane.

But is P visible? This the problem of hidden surface
removal (a.k.a., visible surface determination). We’ll
consider this problem later.

Pinhole camera

[Angel, 2011]

5

Shading

Next, we’ll need a model to describe how light
interacts with surfaces.

Such a model is called a shading model.

Other names:

 Lighting model
 Light reflection model
 Local illumination model
 Reflectance model
 BRDF

6

An abundance of photons

Given the camera and shading model, properly determining the right color at each pixel is extremely
hard. Look around the room. Each light source has different characteristics. Trillions of photons are
pouring out every second.

These photons can:

 interact with molecules and
particles in the air
(“participating media”)

 strike a surface and
• be absorbed
• be reflected (scattered)
• cause fluorescence or

phosphorescence.
 interact in a wavelength-

dependent manner
 generally bounce around and

around

7

Approximation of reality:
Phong and Blinn-Phong illumination
models.

They have the following characteristics:

 not physically correct
 gives a “first-order” approximation to physical

light reflection
 very fast
 widely used

We will assume a local illumination model:
light->surface->viewer

No interreflections, no shadows.

8

Setup…

Given:

 a point P on a surface visible through pixel p
 The normal N at P
 The lighting direction, L, and (color) intensity, IL,

at P
 The viewing direction, V, at P
 The shading coefficients at P

Compute the color, I, of pixel p.

Assume that the direction vectors are normalized:

  N L V 1

9

Our lighting model includes the
following components

Surface color =

Emissive +

Ambient +

Diffuse +

Specular

Next we will talk about each of these in more detail...

10

Emissive

The simplest thing you can do is…

Assign each polygon a single color:

where

 I is the resulting intensity
 ke is the emissivity or intrinsic shade associated

with the object

This has some special-purpose uses, like to represent
glowing objects. But not really good for drawing a
scene. For example: light bulb can have its own color.

[Note: ke is omitted in Angel.]

eI = k

11

Ambient

Let’s make the color at least dependent on the overall
quantity of light available in the scene:

 ka is the ambient reflection coefficient.
• really the reflectance of ambient light
• “ambient” light is assumed to be equal in all

directions
 ILa is the ambient light intensity.

Physically, what is “ambient” light?

[Note: Angel uses La instead of ILa.]

e a LaI k k I 

12

Wavelength dependence

Really, ke, ka, and ILa are functions over all
wavelengths .

Ideally, we would do the calculation on these
functions. For the ambient shading equation, we
would start with:

then we would find good RGB values to represent
the spectrum I().

Traditionally, though, ka and ILa are represented as
RGB triples, and the computation is performed on
each color channel separately:

  a LaI = k I() () ()

R R R
a La

G G G
a La

B B B
a La

I = k I
I = k I

I = k I

13

Let’s examine the ambient shading model:

 objects have different colors
 we can control the overall light intensity

• what happens when we turn off the lights?
• what happens as the light intensity increases?
• what happens if we change the color of the lights?

So far, objects are uniformly lit.

 not the way things really appear
 in reality, light sources are localized in position or

direction

Diffuse, or Lambertian reflection will allow reflected
intensity to vary with the direction of the light.

14

Our lighting model includes the
following components

Surface color =

Emissive +

Ambient +

Diffuse(L) +

Specular(L,V)

15

Our lighting model includes the
following components

Surface color =

Emissive +

Ambient +

For each light L:

Diffuse(L) +

Specular(L,V)

16

Intro to specular and diffuse reflection

17

18

19

The law of reflection

Specular reflection:

Smooth surface causes reflected rays to
travel in the same direction

20

Specular reflection

21

The surface is so smooth in a calm lake
that all the reflected rays bounce off in
the same direction

22

Ripples because of wind causes rough
surface => reflected rays travel in
different directions

23

Most everyday objects have diffuse
reflection because of tiny roughness of
the surface

24

25

26

27

Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces, like
latex paint, or chalk.

These diffuse or Lambertian reflectors reradiate light
equally in all directions.

Picture a rough surface with lots of tiny microfacets.

28

Diffuse reflectors

…or picture a surface with little pigment particles
embedded beneath the surface (neglect reflection at
the surface for the moment):

The microfacets and pigments distribute light rays in
all directions.

Embedded pigments are responsible for the
coloration of diffusely reflected light in plastics and
paints.

Note: the figures above are intuitive, but not strictly
(physically) correct.

29

Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does not
depend on the direction of the viewer. The incoming
light, though, does depend on the direction of the
light source:

30

Diffuse reflection

The incoming energy is proportional to , giving
the diffuse reflection equations:

where:

 kd is the diffuse reflection coefficient
 IL is the (color) intensity of the light source
 N is the normal to the surface (unit vector)
 L is the direction to the light source (unit vector)
 B prevents contribution of light from below the

surface:

[Note: Angel uses Ld instead of IL and f instead of B.]

_____B

B

e a La d L

e a La d L

I = k + k I + k I

= k + k I + k I ()

1 if

0 if

 
  

B =
N L 0
N L 0

31

32

Our lighting model includes the
following components

Surface color =

Emissive +

Ambient +

For each light L:

Diffuse(L) +

Specular(L,V)

33

Specular reflection

Specular reflection accounts for the highlight that
you see on some objects.

It is particularly important for smooth, shiny surfaces,
such as:

 metal
 polished stone
 plastics
 apples
 skin

Properties:

 Specular reflection depends on the viewing
direction V.

 For non-metals, the color is determined solely by
the color of the light.

 For metals, the color may be altered (e.g., brass)

34

Specular reflection “derivation”

For a perfect mirror reflector, light is reflected about N,
so

For a near-perfect reflector, you might expect the
highlight to fall off quickly with increasing angle .

Also known as:

 “rough specular” reflection
 “directional diffuse” reflection
 “glossy” reflection

if

0 otherwise
LII


 


V R

35

Phong specular reflection

One way to get this effect is to take (R·V), raised to a
power ns.

As ns gets larger,

 the dropoff becomes {more,less} gradual
 gives a {larger,smaller} highlight
 simulates a {more,less} mirror-like surface

Phong specular reflection is proportional to:

where (x)+  max(0, x).

100 80 60 40 20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosns φ

φ

ns = 1

ns = 128

specular B R V snI ()

36

Blinn-Phong specular reflection

A common alternative for specular reflection is the
Blinn-Phong model (sometimes called the modified
Phong model.)

We compute the vector halfway between L and V as:

Analogous to Phong specular reflection, we can
compute the specular contribution in terms of (N·H),
raised to a power ns:

where, again, (x)+  max(0, x).

 specular B N H snI ()

37

Blinn-Phong

The next update to the Blinn-Phong shading model is
then:

where:

 ks is the specular reflection coefficient
 ns is the specular exponent or shininess
 H is the unit halfway vector between L and V,

where V is the viewing direction.

[Note: Angel uses a instead of ns, and maintains a
separate Ld and Ls, instead of a single IL. This choice
reflects the flexibility available in OpenGL.]





 

    

L L

L

B B

B

I I

I

H

H

s

s

e a La d s

e a La d s

n

n

I = k + k I + k + k

k + k I + k + k

() ()

() ()

N L N

N L N

38

Directional lights

The simplest form of lights supported by renderers are
ambient, directional, and point. Spotlights are also
supported often as a special form of point light.

We’ve seen ambient light sources, which are not really
geometric.

Directional light sources have a single direction and
intensity associated with them.

Using affine notation, what is the homogeneous
coordinate for a directional light?

39

Point lights

The direction of a point light sources is determined by
the vector from the light position to the surface point.

Physics tells us the intensity must drop off inversely
with the square of the distance:

Sometimes, this distance-squared dropoff is
considered too “harsh.” A common alternative is:

with user-supplied constants for a, b, and c.

Using affine notation, what is the homogeneous
coordinate for a point light?

E - P
L =

E - P

r = E - P

atten
1

f  2a+ br + cr

atten
1

f  2r

40

Spotlights
We can also apply a directional attenuation of a point
light source, giving a spotlight effect.

A common choice for the spotlight intensity is:

where

 L is the direction to the point light.
 S is the center direction of the spotlight.
  is the angle between L and S
  is the cutoff angle for the spotlight
 e is the angular falloff coefficient

 
 

 
 
  



2
spot

0 otherwise

e

a br cr

L S
f =

         1Note: cos () cos .L S L S

41

Additive lights

Since light is additive, we can handle multiple lights by
taking the sum over every light.

Our equation is now:

This is the Blinn-Phong illumination model (for
spotlights).

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?

 
   




  
 

j
j j

j

e

B
r r

L S
N H

s

e a La

n
L, j j d j s j2

j j j j j j

I = k + k I +

I k + k
a + b + c

N L

42

Shading in OpenGL

The OpenGL lighting model allows you to associate
different lighting colors according to material
properties they will influence.

Thus, our original shading equation (for point lights):

becomes:

where you can have a global ambient light with
intensity ILa in addition to having an ambient light
intensity ILa,j associated with each individual light, as
well as separate diffuse and specular intensities, ILd,j
and ILs,j, repectively.

     
  1

B
r r

N H
s

e a La

n
L, j j d j s j2 +

j j j j j j

I = k + k I +

I k + k
a + b + c

N L

     1
B

r r
s

e a La

n
a La, j j d Ld, j j s Ls, j j +2

j j j j j j

I = k + k I +

k I + k I + k I
a + b + c

() ()N L N H

43

Materials in OpenGL

The OpenGL code to specify the surface shading
properties is fairly straightforward. For example:

GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);
glMaterialfv(GL_FRONT, GL_SHININESS, ns);

Notes:

 The GL_FRONT parameter tells OpenGL that we
are specifiying the materials for the front of the
surface.

 Only the alpha value of the diffuse color is used
for blending. It’s usually set to 1.

44

Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is
specified something like:

GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 };

GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 };
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 };
GLfloat a0[] = { 1.0 };
GLfloat b0[] = { 0.5 };
GLfloat c0[] = { 0.25 };
GLfloat S0[] = { -1.0, -1.0, 0.0 };
GLfloat beta0[] = { 45 };
GLfloat e0[] = { 2 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);
glLightfv(GL_LIGHT0, GL_AMBIENT, La0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);
glLightfv(GL_LIGHT0, GL_SPECULAR, Ls0);
glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);
glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);

45

Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a
scene. This number is system-dependent.

For directional lights, you specify a light direction, not
position, and the attenuation and spotlight terms are
ignored.

The directions of directional lights and spotlights are
specified in the coordinate systems of the lights, not the
surface points as we’ve been doing in lecture.

46

3D Geometry in the
Graphics Hardware Pipeline
Graphics hardware applies transformations to bring
the objects and lighting into the camera’s coordinate
system:

The geometry is assumed to be made of triangles, and
the vertices are projected onto the image plane.

47

Rasterization

After projecting the vertices, graphics hardware
“smears” vertex properties across the interior of the
triangle in a process called rasterization.

Smearing the z-values and using a Z-buffer will enable
the graphics hardware to determine if a point inside a
triangle is visible. (More on this in another lecture.)

If we have stored colors at the vertices, then we can
smear these as well.

48

49

Let’s consider each channel separately:

50

51

Shading the interiors of triangles

We will be computing colors using the Blinn-Phong
lighting model.

Let’s assume (as graphics hardware does) that we are
working with triangles.

How should we shade the interiors of triangles?

52

Shading with per-face normals

Assume each face has a constant normal:

For a distant viewer and a distant light source and
constant material properties over the surface, how will
the color of each triangle vary?

53

Faceted shading (cont’d)

[Williams and Siegel 1990]

54

Gouraud interpolation

To get a smoother result that is easily performed in
hardware, we can do Gouraud interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.

55

Facted shading vs. Gouraud interpolation

[Williams and Siegel 1990]

56

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we
can miss specular highlights.

2. We will encounter Mach banding (derivative
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…

57

Phong interpolation

To get an even smoother result with fewer artifacts,
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.

58

Gouraud vs. Phong interpolation

[Williams and Siegel 1990]

59

Default pipeline: Gouraud interpolation

→ triangle1 2 3, ,i i iv v v

Default fragment processing:

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

attach cblinn-phong to vertex as “varying”
vi ← project v to image

blinn-phong shade with , , , , ,s sdc L V N k k n

determine lighting directionL
determine viewing directionV 

normalize()eN n

Default vertex processing:

 blinn-phongcolor pc

60

Vertex shader:
attach ne to vertex as “varying”
attach ve to vertex as “varying”
vi ← project v to image

Programmable pipeline:
Phong-interpolated normals!

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

→ triangle1 2 3, ,i i iv v v

Fragment shader:

color shade with , , , , ,p p p
s sdL V N k k n

 normalize()p
eN n

determine lighting directionL 
determine viewing directionV 

61

Choosing Blinn-Phong shading parameters

Experiment with different parameter settings. To get
you started, here are a few suggestions:

 Try ns in the range [0,100]
 Try ka + kd + ks < 1
 Use a small ka (~0.1)

ns kd ks

Metal large Small, color
of metal

Large, color
of metal

Plastic medium
Medium,
color of
plastic

Medium,
white

Planet 0 varying 0

62

BRDF

The diffuse+specular parts of the Blinn-Phong
illumination model are a mapping from light to
viewing directions:

The mapping function fr is often written in terms of
incoming (light) directions in and outgoing (viewing)
directions out:

This function is called the Bi-directional Reflectance
Distribution Function (BRDF).

Here’s a plot with in held constant:

BRDF’s can be quite sophisticated…

(, () or)out outin inr rf f   

(,)outinrf  
in



     
   

 (,)

L

L r

B

f

I

I

L V

L V

L V

s

d s

n

I = k + k()N L N

63

More sophisticated BRDF’s

Anisotropic BRDFs [Westin, Arvo, Torrance 1992]

[Cook and Torrance, 1982]

Artistics BRDFs [Gooch]

64

Summary

You should understand the equation for the Blinn-
Phong lighting model

 What is the physical meaning of each variable?
 How are the terms computed?
 What effect does each term contribute to the

image?
 What does varying the parameters do?

You should also understand the differences between
faceted, Gouraud, and Phong interpolated shading.

And you should understand how to compute the
normal to a surface of revolution.

