
Particle Systems

CSE 457

Winter 2015

3

Reading

Required:

 Witkin, Particle System Dynamics,

SIGGRAPH ’01 course notes on Physically

Based Modeling.

 Witkin and Baraff, Differential Equation

Basics, SIGGRAPH ’01 course notes on

Physically Based Modeling.

Optional

 Hockney and Eastwood. Computer simulation

using particles. Adam Hilger, New York,

1988.

 Gavin Miller. “The motion dynamics of snakes

and worms.” Computer Graphics 22:169-178,

1988.

4

What are particle systems?

A particle system is a collection of point masses

that obeys some physical laws (e.g, gravity, heat

convection, spring behaviors, …).

Particle systems can be used to simulate all sorts

of physical phenomena:

5

6

Particle in a flow field

We begin with a single particle with:

 Position,

 Velocity,

Suppose the velocity is actually dictated by a
driving function, a vector flow field, g:

If a particle starts at some point in that flow field,
how should it move?

(,)tx g x

/

/

dx dtd

dy dtdt

 
    

 

x
v x

x

y

x

y

 
  
 

x

x

g(x,t)

7

Diff eqs and integral curves

The equation

is actually a first order differential equation.

We can solve for x through time by starting at an

initial point and stepping along the vector field:

This is called an initial value problem and the

solution is called an integral curve.

Start Here

(,)tx g x

8

Euler’s method

One simple approach is to choose a time step, Dt,
and take linear steps along the flow:

Writing as a time iteration:

This approach is called Euler’s method and looks
like:

Properties:

 Simplest numerical method

 Bigger steps, bigger errors. Error ~ O(Dt2).

Need to take pretty small steps, so not very
efficient. Better (more complicated) methods exist,
e.g., adaptive timesteps, Runge-Kutta, and implicit

() () ()

() ()

() ((),)

t t t t t
t

t t t

t t t t


       



   

   

x
x x x x

x x

x g x

1i i it   x x g   (,)i i t i tg g xwith

9

Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:

 Mass, m

 Acceleration,

The particle obeys Newton’s law:

So, given a force, we can solve for the

acceleration:

The force field f can in general depend on the

position and velocity of the particle as well as time.

Thus, with some rearrangement, we end up with:
(, ,)t

m


f x x
x

m m f a x

   
2

2d d

dt dt

v
a x v

x

m


f
x

10

This equation:

is a second order differential equation.

Our solution method, though, worked on first order

differential equations.

We can rewrite the second order equation as:

where we substitute in v and its derivative to get a

pair of coupled first order equations.

Second order equations

   
          

   

 or (, ,) (, ,)t t

m m

x v v
x

f x v f x v
vv

(, ,)t

m


f x x
x

11

Phase space

Concatenate x and v to make a

6-vector: position in phase

space.

Taking the time derivative:

another

6-vector.

A vanilla 1st-order differential

equation.

 
 
 

x

v

/ m

   
   

   

x v

v f

 
 
 

x

v

12

Differential equation solver

Applying Euler’s method:

   

   

() () ()

() () ()

t t t t t

t t t t t

x x x

x x x

Again, performs poorly for large Dt.

/ m

   
   

   

x v

v f

1

1

i i i

i
i i

t

t
m





  

  

x x v

f
v v

   

   

() () ()

((), (),)
() ()

t t t t t

t t t
t t t t

m

x x v

f x v
v v

And making substitutions:

Writing this as an iteration, we have:

Starting with:

 , ,i i i tf f x vwith

13

Particle structure

m

 
 
 
 
 
 

x

v

f

position

velocity

force accumulator

mass

Position in phase space

How do we represent a particle?

14

Single particle solver interface

m

 
 
 
 
 
 

x

v

f
 
 
 

x

v

/ m

 
 
 

v

f

 6getDim

derivEval

getState

setState

15

Particle systems

particles n time

In general, we have a particle system consisting

of n particles to be managed over time:

     
     
     
     
     
     

1 2

1 2

1 2

1 2

n

n

n

nm m m

x x x

v v v

f f f

16

Particle system solver interface

1 1 2 2

1 2
1 2

1 2

6

n n

n
n

n

n

m m m

x v x v x v

f f f
v v v

derivEval

get/setState
getDim

For n particles, the solver interface now looks like:

particles n time

17

Particle system diff. eq. solver

We can solve the evolution of a particle system

again using the Euler method:

1

1 1 1

1

1 1 1 1

1

1

/

/

i i i

i i i

i i i

n n n

i i i

n n n n

m

t

m









     
     
     
       
     
     
          

x x v

v v f

x x v

v v f

18

Forces

Each particle can experience a force which sends it

on its merry way.

Where do these forces come from? Some

examples:

 Constant (gravity)

 Position/time dependent (force fields)

 Velocity-dependent (drag)

 N-ary (springs)

How do we compute the net force on a particle?

19

Force objects are black boxes that point to the

particles they influence and add in their

contributions.

We can now visualize the particle system with

force objects:

Particle systems with forces

particles n time forces

F2 Fnf

nf

     
     
     
     
     
     

1 2

1 2

1 2

1 2

n

n

n

nm m m

x x x

v v v

f f f

F1

20

Gravity and viscous drag

grav mf G

p->f += p->m * F->G

drag dragk f v

p->f -= F->k * p->v

The force due to gravity is simply:

Often, we want to slow things down with viscous drag:

21

22

A spring is a simple examples of an “N-ary” force.

Recall the equation for the force due to a 1D

spring:

With damping:

In 2D or 3D, we get:

Note: stiff spring systems can be very unstable

under Euler integration. Simple solutions include

heavy damping (may not look good), tiny time

steps (slow), or better integration (Runge-Kutta is

straightforward).

Damped spring

  ()springf k x r

   [()]spring dampf k x r k v

          

 

1

2 1

ˆ ˆ()spring dampf k r k

f f

x v x x

1 2

1 2

ˆ

  


 



  

x x x

x
x

x

v v v

r 1

1

1

p
 

  
 

x

v

2

2

2

p
 

  
 

x

v

x

r = rest length

23

     
     
     

       
     
     

1 2

1 2

1 2

1 2

0 0 0

n

n

n

nm m m

x x x

v v v

f f f

derivEval

1. Clear forces

• Loop over particles, zero force

accumulators

2. Calculate forces

• Sum all forces into accumulators

3. Return derivatives

• Loop over particles, return v and f/m

1 2

1 2

1 2

n

n

nm m m

     
     
     
          

v v v

f f f

Apply forces

to particles

Clear force

accumulators1

2

3 Return derivatives

to solver

1 2

1 2

1 2

1 2

n

n

n

nm m m

     
     
     
     
     
     

x x x

v v v

f f f

F

2

F3 FnfF1

24

Bouncing off the walls

Handling collisions is a useful add-on for a particle

simulator.

For now, we’ll just consider simple point-plane

collisions.

A plane is fully specified by any point P on the plane

and its normal N.

N

P

v

x

25

Collision Detection

How do you decide when you’ve made exact

contact with the plane?

N

P

v

x

26

Normal and tangential velocity

()N

T N

 

 

v N v N

v v v

To compute the collision response, we need to

consider the normal and tangential components of

a particle’s velocity.

N

P

v

x

Nv v

Tv

27

Collision Response

before after

T restitution Nk v v v

v’
resitution Nk v

Tv

The response to collision is then to immediately

replace the current velocity with a new velocity:

The particle will then move according to this velocity

in the next timestep.

Nv v

Tv

28

Collision without contact

In general, we don’t sample moments in time when

particles are in exact contact with the surface.

There are a variety of ways to deal with this

problem.

The most expensive is backtracking: determine if

a collision must have occurred, and then roll back

the simulation to the moment of contact.

A simple alternative is to determine if a collision

must have occurred in the past, and then pretend

that you’re currently in exact contact.

29

Very simple collision response

How do you decide when you’ve had a collision
during a timestep?

A problem with this approach is that particles will

disappear under the surface. We can reduce this

problem by essentially offsetting the surface:

Also, the response may not be enough to bring a

particle to the other side of a wall In that case,

detection should include a velocity check:

N

P
v1

x1

x2
x3v2

v3

30

More complicated collision response

Another solution is to modify the update scheme

to:

 detect the future time and point of collision

 reflect the particle within the time-step

N

P

v

x

31

Particle-sphere collision

Suppose a particle collides with a sphere :

 How would we detect this collision?

 What normal should we use for collision

response?

32

Particle frame of reference

Let’s say we had our robot arm example and we

wanted to launch particles from its tip.

How would we go about starting the particles from

the right place?

First, we have to look at the coordinate systems in

the OpenGL pipeline…

33

The OpenGL geometry pipeline

34

Projection and modelview matrices

Any piece of geometry will get transformed by a

sequence of matrices before drawing:

p’= Mproject Mview Mmodel p

The first matrix is OpenGL’s GL_PROJECTION

matrix.

The second two matrices, taken as a product, are

maintained on OpenGL’s GL_MODELVIEW stack:

Mmodelview = Mview Mmodel

35

Robot arm code, revisited

Recall that the code for the robot arm looked

something like:

glRotatef(theta, 0.0, 1.0, 0.0);

base(h1);

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

upper_arm(h2);

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

lower_arm(h3);

All of the GL calls here modify the modelview

matrix.

Note that even before these calls are made, the

modelview matrix has been modified by the viewing

transformation, Mview.

36

Computing the particle launch point

To find the world coordinate position of the end of

the robot arm, you need to follow a series of steps:

1. Figure out what Mview is before drawing your

model.

2.Draw your model and add one more

transformation to the tip of the robot arm.

glTranslatef(0.0, h3, 0.0);

3. Compute

4. Transform a point at the origin by the resulting

matrix.

Now you’re ready to launch a particle from that last

computed point!

Vec3f particleOrigin = particleXform * Vec3f(0,0,0);

Mat4f particleXform = getWorldXform(Mview);

Mat4f Mview = glGetModelViewMatrix();

 -1

model view modelviewM M M

37

Summary

What you should take away from this lecture:

 The meanings of all the boldfaced terms

 Euler method for solving differential equations

 Combining particles into a particle system

 Physics of a particle system

 Various forces acting on a particle

 Simple collision detection

 How to hook your particle system into the

coordinate frame of your model

