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Reading

Required:

 Witkin, Particle System Dynamics, 

SIGGRAPH ’01 course notes on Physically 

Based Modeling.

 Witkin and Baraff, Differential Equation 

Basics, SIGGRAPH ’01 course notes on 

Physically Based Modeling.

Optional

 Hockney and Eastwood. Computer simulation 

using particles.  Adam Hilger, New York, 

1988.

 Gavin Miller. “The motion dynamics of snakes 

and worms.” Computer Graphics 22:169-178, 

1988.



4

What are particle systems?

A particle system is a collection of point masses 

that obeys some physical laws (e.g, gravity, heat 

convection, spring behaviors, …).

Particle systems can be used to simulate all sorts 

of physical phenomena:
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Particle in a flow field

We begin with a single particle with:

 Position,  

 Velocity, 

Suppose the velocity is actually dictated by a 
driving function, a vector flow field, g:

If a particle starts at some point in that flow field, 
how should it move?
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Diff eqs and integral curves

The equation 

is actually a first order differential equation.

We can solve for x through time by starting at an 

initial point and stepping along the vector field:

This is called an initial value problem and the 

solution is called an integral curve.

Start Here

( , )tx g x
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Euler’s method

One simple approach is to choose a time step, Dt, 
and take linear steps along the flow:

Writing as a time iteration:

This approach is called Euler’s method and looks 
like:

Properties:

 Simplest numerical method

 Bigger steps, bigger errors.  Error ~ O(Dt2).

Need to take pretty small steps, so not very 
efficient.  Better (more complicated) methods exist, 
e.g., adaptive timesteps, Runge-Kutta, and implicit 
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Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:

 Mass, m

 Acceleration, 

The particle obeys Newton’s law: 

So, given a force, we can solve for the 

acceleration:

The force field f can in general depend on the 

position and velocity of the particle as well as time.

Thus, with some rearrangement, we end up with:
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This equation:

is a second order differential equation.

Our solution method, though, worked on first order 

differential equations.

We can rewrite the second order equation as:

where we substitute in v and its derivative to get a 

pair of coupled first order equations.

Second order equations
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Phase space

Concatenate x and v to make a 

6-vector: position in phase 

space.

Taking the time derivative: 

another 

6-vector.

A vanilla 1st-order differential 

equation.

 
 
 

x

v

/ m

   
   

   

x v

v f

 
 
 

x

v



12

Differential equation solver

Applying Euler’s method:
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Again, performs poorly for large Dt.
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And making substitutions:

Writing this as an iteration, we have:

Starting with:

 , ,i i i tf f x vwith 
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Particle structure

m
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Position in phase space

How do we represent a particle?



14

Single particle solver interface
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Particle systems

particles n time

In general, we have a particle system consisting 

of n particles to be managed over time:
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Particle system solver interface

1 1 2 2

1 2
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For n particles, the solver interface now looks like:

particles n time
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Particle system diff. eq. solver

We can solve the evolution of a particle system 

again using the Euler method:
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Forces

Each particle can experience a force which sends it 

on its merry way.

Where do these forces come from?  Some 

examples:

 Constant (gravity)

 Position/time dependent (force fields)

 Velocity-dependent (drag)

 N-ary (springs)

How do we compute the net force on a particle?
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Force objects are black boxes that point to the 

particles they influence and add in their 

contributions. 

We can now visualize the particle system with 

force objects:

Particle systems with forces

particles n time forces
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Gravity and viscous drag

grav mf G

p->f += p->m * F->G

drag dragk f v

p->f -= F->k * p->v

The force due to gravity is simply:

Often, we want to slow things down with viscous drag:
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A spring is a simple examples of an “N-ary” force. 

Recall the equation for the force due to a 1D 

spring:

With damping:

In 2D or 3D, we get:

Note: stiff spring systems can be very unstable 

under Euler integration.  Simple solutions include 

heavy damping (may not look good), tiny time 

steps (slow), or better integration (Runge-Kutta is 

straightforward).

Damped spring
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1. Clear forces

• Loop over particles, zero force 

accumulators

2. Calculate forces

• Sum all forces into accumulators

3. Return derivatives

• Loop over particles, return v and f/m
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Bouncing off the walls

Handling collisions is a useful add-on for a particle 

simulator.

For now, we’ll just consider simple point-plane 

collisions.

A plane is fully specified by any point P on the plane 

and its normal N.

N

P

v

x
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Collision Detection

How do you decide when you’ve made exact

contact with the plane?
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Normal and tangential velocity

( )N

T N

 
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v N v N

v v v

To compute the collision response,  we need to 

consider the normal and tangential components of 

a particle’s velocity.
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Collision Response

before after

T restitution Nk v v v

v’
resitution Nk v

Tv

The response to collision is then to immediately 

replace the current velocity with a new velocity:

The particle will then move according to this velocity 

in the next timestep.

Nv v

Tv
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Collision without contact

In general, we don’t sample moments in time when 

particles are in exact contact with the surface.

There are a variety of ways to deal with this 

problem.

The most expensive is backtracking: determine if 

a collision must have occurred, and then roll back 

the simulation to the moment of contact.

A simple alternative is to determine if a collision 

must have occurred in the past, and then pretend 

that you’re currently in exact contact.



29

Very simple collision response

How do you decide when you’ve had a collision 
during a timestep?

A problem with this approach is that particles will 

disappear under the surface.  We can reduce this 

problem by essentially offsetting the surface:

Also, the response may not be enough to bring a 

particle to the other side of a wall  In that case, 

detection should include a velocity check:
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More complicated collision response

Another solution is to modify the update scheme 

to:

 detect the future time and point of collision

 reflect the particle within the time-step

N

P

v

x
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Particle-sphere collision

Suppose a particle collides with a sphere :

 How would we detect this collision?

 What normal should we use for collision 

response?
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Particle frame of reference

Let’s say we had our robot arm example and we 

wanted to launch particles from its tip.  

How would we go about starting the particles from 

the right place?

First, we have to look at the coordinate systems in 

the OpenGL pipeline…
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The OpenGL geometry pipeline
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Projection and modelview matrices

Any piece of geometry will get transformed by a 

sequence of matrices before drawing:

p’= Mproject Mview Mmodel p

The first matrix is OpenGL’s GL_PROJECTION 

matrix.

The second two matrices, taken as a product, are 

maintained on OpenGL’s GL_MODELVIEW stack:

Mmodelview = Mview Mmodel
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Robot arm code, revisited

Recall that the code for the robot arm looked 

something like:

glRotatef( theta, 0.0, 1.0, 0.0 );

base(h1);

glTranslatef( 0.0, h1, 0.0 );

glRotatef( phi, 0.0, 0.0, 1.0 );

upper_arm(h2);

glTranslatef( 0.0, h2, 0.0 );

glRotatef( psi, 0.0, 0.0, 1.0 );

lower_arm(h3);

All of the GL calls here modify the modelview

matrix.  

Note that even before these calls are made, the 

modelview matrix has been modified by the viewing 

transformation, Mview.



36

Computing the particle launch point

To find the world coordinate position of the end of 

the robot arm, you need to follow a series of steps:

1.  Figure out what Mview is before drawing your 

model.

2.Draw your model and add one more 

transformation to the tip of the robot arm.

glTranslatef( 0.0, h3, 0.0 );

3. Compute

4. Transform a point at the origin by the resulting 

matrix.

Now you’re ready to launch a particle from that last 

computed point!

Vec3f particleOrigin = particleXform * Vec3f(0,0,0);

Mat4f particleXform = getWorldXform(Mview);

Mat4f Mview = glGetModelViewMatrix();

 -1

model view modelviewM M M
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Summary

What you should take away from this lecture:

 The meanings of all the boldfaced terms

 Euler method for solving differential equations

 Combining particles into a particle system 

 Physics of a particle system

 Various forces acting on a particle

 Simple collision detection

 How to hook your particle system into the 

coordinate frame of your model


