Affine Transformations

CSE 457 Winter 2015

Reading

Required:

• Angel 3.1, 3.7-3.11

Further reading:

- Angel, the rest of Chapter 3
- Foley, et al, Chapter 5.1-5.5.
- ◆ David F. Rogers and J. Alan Adams, *Mathematical Elements for Computer Graphics*, 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: $(x', y', z') = \mathbf{f}(x, y, z)$.

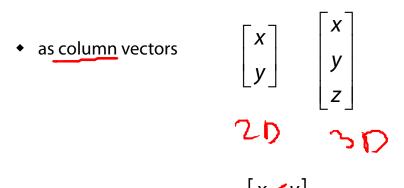
These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

Vector representation

as row vectors

We can represent a **point**, $\mathbf{p} = (x,y)$, in the plane or $\mathbf{p} = (x,y,z)$ in 3D space



Canonical axes

Vector length and dot products

Vector length and dot products

$$V = \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix}$$

$$||v|| = \sqrt{v_{x}^{2} + v_{y}^{2}} + v_{z}^{2}$$

$$||v|| = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} + v_{z}^{2}$$

$$||v|| = \sqrt{v_{x}^{2} + v_{y}^{2}} + v_{z}^{2} + v_{z}^{2}$$

ODD° => parallel NTV 0=90 => U·V=0 U.V= V.U Yes.

V=(vx vy v3)

N P NV

projection of u onto v

V(V.N)

Vector cross products

$$= \begin{pmatrix} u_{y}v_{z} - u_{z}v_{y} \\ -u_{x}v_{z} + u_{z}v_{x} \end{pmatrix}$$

$$= \begin{pmatrix} u_{y}v_{z} - u_{y}v_{x} \\ u_{x}v_{y} - u_{y}v_{x} \end{pmatrix}$$

$$(u \times v) \cdot u = 0$$

$$(u \times v) \cdot v = 0$$

Representation, cont.

$$(AB)^{T} = (B^{T}A^{T})$$

We can represent a **2-D transformation** *M* by a matrix

$$\overrightarrow{A} = \overrightarrow{I} \qquad \begin{pmatrix} x & b \\ y' \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

If \mathbf{p} is a column vector, M goes on the left:

$$(AB)^{-1}(AB) = I \int_{\mathbb{R}^{d}} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$M^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

If **p** is a row vector,
$$M^T$$
 goes on the right:
$$\mathbf{p'} = \mathbf{p}M^T$$

$$\mathbf{p'} = \mathbf{p}M^T$$

$$(x' y') = (x y) M^T$$

$$\mathbf{p'} = \mathbf{p} M^{T}$$

$$[x' \ y'] = [x \ y] \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

We will use column vectors.

assyming AB invertible

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
So:
$$x' = ax + by$$

$$y' = cx + dy$$

We will develop some intimacy with the elements a, b, c, d...

Identity

$$M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Suppose we choose a=d=1, b=c=0:

• Gives the **identity** matrix:

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Doesn't move the points at all

Scaling

(a 5)

Suppose we set b=c=0, but let a and d take on any positive value:

• Gives a **scaling** matrix:

Provides differential (non-uniform) scaling in x and y:

y' = dy

Suppose we keep b=c=0, but let either a or d go negative.

Examples:

$$M = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$X' = X$$

$$Y' = Y$$

$$A = X$$

$$A = X$$

$$Y' = Y$$

$$A = X$$

$$A = X$$

$$Y' = Y$$

$$A = X$$

$$A = X$$

$$Y' = Y$$

$$A = X$$

$$A$$

 $\begin{pmatrix} a b \\ c d \end{pmatrix}$

Now let's leave a=d=1 and experiment with b...

The matrix

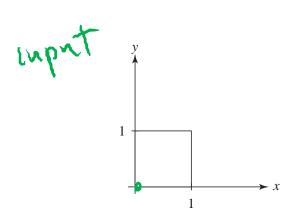
$$M = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

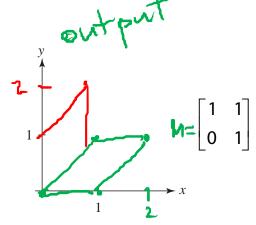
gives:

$$x' = x + by$$

$$y' = y$$

 $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

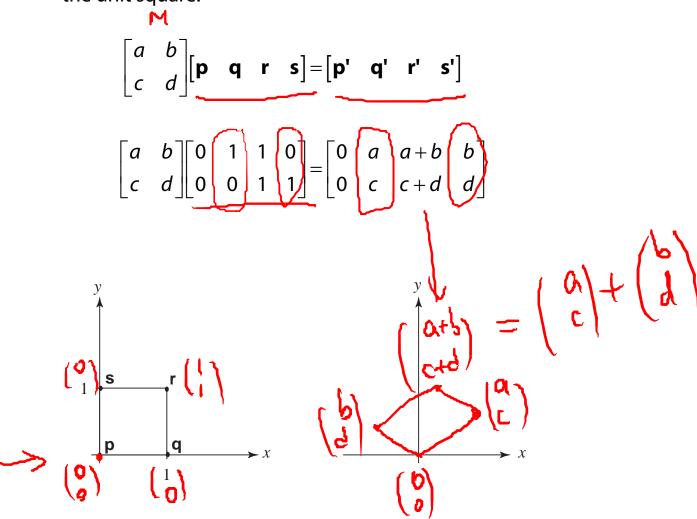




$$\begin{array}{c}
(0,0) \to (0,0) \\
(1,0) \to (1,0) \\
(0,1) \to (1,1) \\
(1,1) \to (2,1)
\end{array}$$

Effect on unit square

Let's see how a general 2 x 2 transformation *M* affects the unit square:



Effect on unit square, cont.

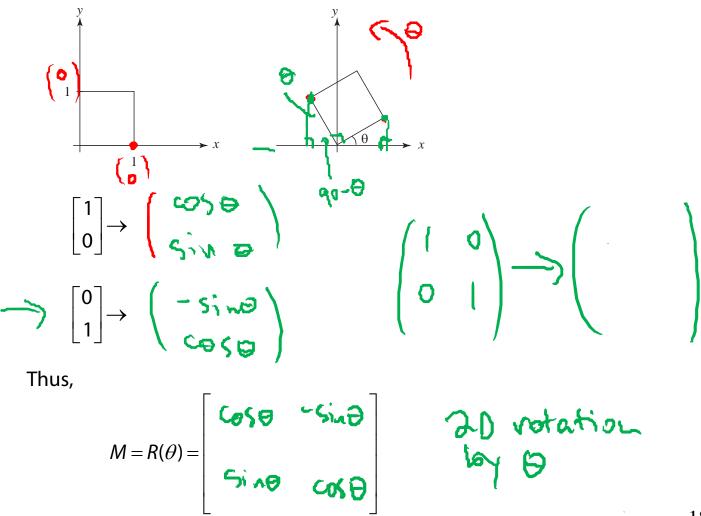
M=(ab)

Observe:

- → → Origin invariant under *M*
 - ◆ *M* can be determined just by knowing how the corners (1,0) and (0,1) are mapped
 - ◆ *a* and *d* give *x* and *y*-scaling
 - b and c give x- and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":



Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Translation

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Adding the third "w" component puts us in **homogenous coordinates**.

And then transform with a 3 x 3 matrix:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{array}{cccc}
7 & & & & & & \\
1 & 0 & & & & \\
0 & 0 & & & & \\
& & & & & \\
& & & & & \\
\end{array}$$

$$\begin{array}{cccc}
(x) & & & & \\
(x) & & & \\
(x) & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(x) & & & \\
(x) & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(x) & & & \\
(x) & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(x) & & & \\
(x) & & & \\
\end{array}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1/2 \\ 1 \end{pmatrix}$$

Anatomy of an affine matrix

The addition of translation to linear transformations gives us **affine transformations**.

In matrix form, 2D affine transformations always look like this:

$$M = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & \mathbf{t} \\ 0 & 0 & 1 \end{bmatrix}$$

2D affine transformations always have a bottom row of [0 0 1].

An "affine point" is a "linear point" with an added w-coordinate which is always 1:

$$\mathbf{p}_{\mathrm{aff}} = \begin{bmatrix} \mathbf{p}_{\mathrm{lin}} \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

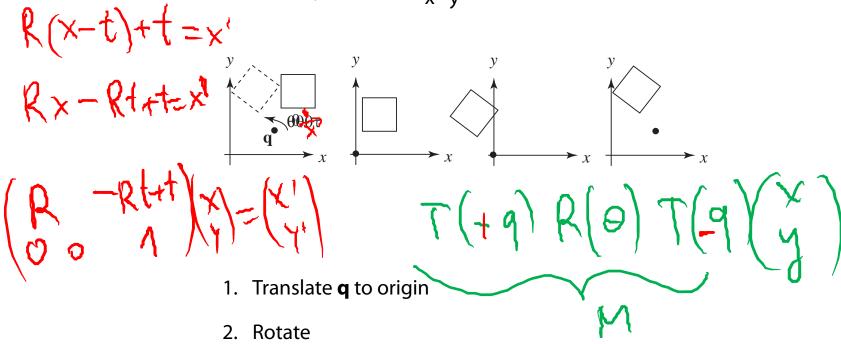
Applying an affine transformation gives another affine point:

$$M\mathbf{p}_{\mathsf{aff}} = \begin{bmatrix} A\mathbf{p}_{\mathsf{lin}} + \mathbf{t} \\ 1 \end{bmatrix}$$

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, q, about any point $\mathbf{q} = [q_\chi \, q_V]^\mathsf{T}$ with a matrix:



3. Translate back

Note: Transformation order is important!!

$$P = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$P = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q + bQ = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q = \begin{pmatrix} x$$

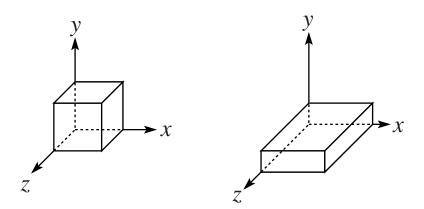
line
$$p(t) = p + t\bar{u}$$
 $t \in [-\infty, \infty)$
Ray:

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

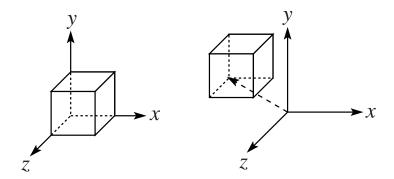
For example, <u>scaling</u>:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



Translation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



Rotation in 3D (cont'd)

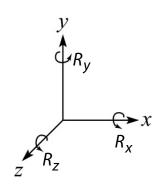
These are the rotations about the canonical axes:

$$R_{X}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{Y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \end{bmatrix}$$
Use right hand rule

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0\\ \sin \gamma & \cos \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Use right hand rule

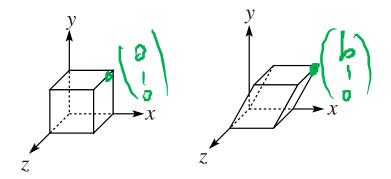
A general rotation can be specified in terms of a product of these three matrices. How else might you specify a rotation?

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$



We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
 - Midpoints map to midpoints (in fact, ratios are always preserved)

L₁
$$p_1 + t\bar{u}$$
 $p_1 + t\bar{u}$
 $p_1 + t\bar{u}$
 $p_2 + t\bar{u}$
 $p_3 + t\bar{u}$
 $p_4 + t\bar{u}$
 $p_5 + t\bar{u}$
 $p_6 + t\bar{u}$

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation **M**.

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

• glTranslatef (
$$t_x$$
, t_y , t_z) $M \leftarrow MT$
- translate by (t_x , t_y , t_z)

• glScalef(
$$s_x$$
, s_y , s_z) $M \leftarrow MS$
- scale by (s_x, s_y, s_z)

Note that OpenGL adds transformations by *postmultiplication* of the modelview matrix.

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.