
1

Ray Tracing

Brian Curless
CSE 457

Spring 2015

2

Reading

Required:

 Shirley, section 10.1-10.7 (online handout)
 Triangle intersection (online handout)

Further reading:

 Shirley errata on syllabus page, needed if you
work from his book instead of the handout,
which has already been corrected.

 T. Whitted. An improved illumination model
for shaded display. Communications of the
ACM 23(6), 343-349, 1980.

 A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989.

 K. Turkowski, “Properties of Surface Normal
Transformations,” Graphics Gems, 1990, pp.
539-547.

3

Geometric optics

Modern theories of light treat it as both a wave and
a particle.

We will take a combined and somewhat simpler
view of light – the view of geometric optics.

Here are the rules of geometric optics:

 Light is a flow of photons with wavelengths.
We'll call these flows “light rays.”

 Light rays travel in straight lines in free space.
 Light rays do not interfere with each other as

they cross.
 Light rays obey the laws of reflection and

refraction.
 Light rays travel from the light sources to the

eye, but the physics is invariant under path
reversal (reciprocity).

4

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray
tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray
tracing)

We will generally follow rays from the eye into the
scene.

5

Precursors to ray tracing

Local illumination

 Cast one eye ray, then shade according to
light

Appel (1968)

 Cast one eye ray + one ray to light

6

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the
graphics community.

 Combines eye ray tracing + rays to light
 Recursively traces rays

Algorithm:

1. For each pixel, trace a primary ray in direction V to the
first visible surface.

2. For each intersection, trace secondary rays:

 Shadow rays in directions Li to light sources
 Reflected ray in direction R.
 Refracted ray or transmitted ray in direction T.

7

Whitted algorithm (cont'd)

Let's look at this in stages:

8

Ray casting and local illumination

Now let’s actually build the ray tracer in stages.
We’ll start with ray casting and local illumination:

9

Direct illumination

A ray is defined by an origin P and a unit direction d
and is parameterized by t > 0 :

r(t) = P + t d

Let I (P, d) be the intensity seen along a ray. Then:

I (P, d) = Idirect

where

 Idirect is computed from the Blinn-Phong model

10

Shading in “Trace”

The Trace project uses a version of the Blinn-Phong
shading equation we derived in class, with two
modifications:

 Distance attenuation is clamped to be at most 1:

 Shadow attenuation A shadow is included.

Here’s what it should look like:

This is the shading equation to use in the Trace
project!

1
min 1,dist

jA

2
j j j j ja + b r +c r

 j j
shadow distA A B

 N H
s

e a La

n
L, j j d j s j

j

I = k + k I +

I k + kN L

11

Ray-tracing pseudocode

We build a ray traced image by casting rays through
each of the pixels.

function traceImage (scene):

for each pixel (i,j) in image

A = pixelToWorld (i,j)

P = COP
d = (A – P)/|| A – P ||

I(i,j) = traceRay (scene, P, d)

end for

end function

function traceRay (scene, P, d):

(t, N, mtrl) scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade ()

return I

end function

12

Shading pseudocode

Next, we need to calculate the color returned by the
shade function.

function shade (mtrl, scene, Q, N, d):

I mtrl.ke + mtrl. ka * ILa

for each light source Light do:

atten = Light -> distanceAttenuation ()

L = Light -> getDirection ()

I I + atten*(diffuse term + specular term)

end for
return I

end function

13

Ray casting with shadows

Now we’ll add shadows by casting shadow rays:

14

Shading with shadows

To include shadows, we need to modify the shade
function:

function shade (mtrl, scene, Q, N, d):

I mtrl.ke + mtrl. ka * ILa

for each light source Light do:

atten = Light -> distanceAttenuation(Q) *

Light -> shadowAttenuation()

L = Light -> getDirection (Q)

I I + atten*(diffuse term + specular term)

end for
return I

end function

15

Shadow attenuation

Computing a shadow can be as simple as checking
to see if a ray makes it to the light source.

For a point light source:

function PointLight ::shadowAttenuation (scene, P)

d = getDirection(P)

(t, N, mtrl) scene.intersect (P, d)

Compute tlight
if (t < tlight) then:

atten = (0, 0, 0)

else
atten = (1, 1, 1)

end if
return atten

end function

Note: we will later handle color-filtered shadowing,
so this function needs to return a color value.

For a directional light, tlight = ∞.

16

Recursive ray tracing with reflection

Now we’ll add reflection:

17

Shading with reflection

Let I (P, d) be the intensity seen along a ray. Then:

I (P, d) = Idirect + Ireflected

where

 Idirect is computed from the Blinn-Phong model,
plus shadow attenuation

 Ireflected = kr I (Q, R)

Typically, we set kr = ks. (kr is a color value.)

18

Reflection

Law of reflection:

i = r

R is co-planar with d and N.

19

Ray-tracing pseudocode, revisited

function traceRay (scene, P, d):

(t, N, mtrl) scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade (scene, mtrl, Q, N, -d)

R = reflectDirection ()

I I + mtrl.kr traceRay(scene, Q, R)

return I

end function

20

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

21

Whitted ray tracing

Finally, we’ll add refraction, giving us the Whitted ray
tracing model:

22

Shading with reflection and refraction

Let I (P, d) be the intensity seen along a ray. Then:

I (P, d) = Idirect + Ireflected + Itransmitted

where

 Idirect is computed from the Blinn-Phong model,
plus shadow attenuation

 Ireflected = kr I (Q, R)
 Itransmitted = kt I (Q, T)

Typically, we set kr = ks and kt = 1 – ks (or (0,0,0), if
opaque, where kt is a color value).

[Generally, kr and kt are determined by “Fresnel
reflection,” which depends on angle of incidence and
changes the polarization of the light. This is discussed
in Shirley’s textbook and can be implemented for
extra credit.]

23

Refraction

Snell's law of refraction:

i sini = t sint

where i , t are indices
of refraction.

In all cases, R and T are
co-planar with d and N.

The index of refraction is material dependent.

It can also vary with wavelength, an effect called
dispersion that explains the colorful light rainbows
from prisms. (We will generally assume no dispersion.)

24

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What happens when i > t ?

When t is exactly 90°, we say that i has achieved the
“critical angle” c .

For i > c , no rays are transmitted, and only reflection
occurs, a phenomenon known as “total internal
reflection” or TIR.

25

Shirley uses different symbols. Here is the translation
between them:

Also, Shirley has two important errors that have
already been corrected in the handout.

But, if you’re consulting the original 2005 text, be sure
to refer to the errata posted on the syllabus and on
the project page for corrections.

Shirley’s notation

t

r i

i

t t

n

n

r = R

t = T

26

Ray-tracing pseudocode, revisited
function traceRay (scene, P, d):

(t, N, mtrl) scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade (scene, mtrl, Q, N, -d)

R = reflectDirection (N, -d)

I I + mtrl.kr traceRay (scene, Q, R)

if ray is entering object then
n_i = index_of_air

n_t = mtrl.index

else
n_i = mtrl.index

n_t = index_of_air

if (notTIR ()) then
T = refractDirection ()

I I + mtrl.kt traceRay (scene, Q, T)

end if
return I

end function

Q: How do we decide if a ray is entering the object?

27

Terminating recursion, incl. refraction

Q: Now how do you bottom out of recursive ray
tracing?

28

Shadow attenuation (cont’d)

Q: What if there are transparent objects along a path
to the light source?

We’ll take the view that the color is really only at the
surface, like a glass object with a colored transparency
coating on it. In this case, we multiply in the
transparency constant, kt , every time an object is
entered or exited, possibly more than once for the
same object.

29

Shadow attenuation (cont’d)

Another model would be to treat the glass as solidly
colored in the interior. Shirley’s textbook describes a
the resulting volumetric attenuation based on Beer’s
Law, which you can implement for extra credit.

30

Photon mapping

Combine light ray tracing (photon tracing) and eye ray
tracing:

…to get photon mapping.

Renderings by Henrik Wann Jensen:

http://graphics.ucsd.edu/~henrik/
images/caustics.html

31

Normals and shading when inside

When a ray is inside an object and intersects the
object’s surface on the way out, the normal will be
pointing away from the ray (i.e., the normal always
points to the outside by default).

You must negate the normal before doing any of the
shading, reflection, and refraction that follows.

Finally, when shading a point inside of an object, apply
kt to the ambient component, since that “ambient
light” had to pass through the object to get there in
the first place.

32

Intersecting rays with spheres

Now we’ve done everything except figure out what that
“scene.intersect (P, d)” function does.

Mostly, it calls each object to find out the t value at which the
ray intersects the object. Let’s start with intersecting
spheres…

Given:

 The coordinates of a point along a ray passing through
P in the direction d are:

 A unit sphere S centered at the origin defined by the
equation:

Find: The t at which the ray intersects S.

x x

y y

z z

x P td

y P td

z P td

33

Intersecting rays with spheres

Solution by substitution:

where

Q: What are the solutions of the quadratic equation in
t and what do they mean?

Q: What is the normal to the sphere at a point (x, y, z)
on the sphere?

2 2 2

2 2 2

2

1 0

() () () 1 0

0

x x y y z z

x y z

P td P td P td

at bt c

2 2 2

2 2 2

2()

1

x y z

x x y y z z

x y z

a d d d

b P d P d P d

c P P P

34

Ray-plane intersection

Next, we will considering intersecting a ray with a
plane.

To do this, we first need to define the plane equation.

Given a point S on a plane with normal N, how would
we determine if a point X is on the plane?

(Hint: start by forming the vector X - S.)

This is the plane equation!

35

Ray-plane intersection (cont’d)

Now consider a ray intersecting a plane. The plane
has equation:

We can solve for the intersection parameter (and thus
the point):

36

Ray-triangle intersection

To intersect with a triangle, we first solve for the
equation of its supporting plane.

How might we compute the (un-normalized) normal?

Given this normal, how would we compute k ?

Using these coefficients, we can solve for Q. Now, we
need to decide if Q is inside or outside of the triangle.

37

3D inside-outside test

One way to do this “inside-outside test,” is to see
if Q lies on the left side of each edge as we move
counterclockwise around the triangle.

How might we use cross and products to do this?

38

2D inside-outside test

Without loss of generality, we can make this
determination after projecting down a
dimension:

If Q’ is inside of A’B’C’, then Q is inside of ABC.

Why is this projection desirable?

Which axis should you “project away”?

39

Barycentric coordinates

As we’ll see in a moment, it is often useful to
represent Q as an affine combination of A, B, and C:

where:

We call , , and , the barycentric coordinates of Q
with respect to A, B, and C.

Q A B C

1

40

Computing barycentric coordinates

Given a point Q that is inside of triangle ABC, we can
solve for Q’s barycentric coordinates in a simple way:

How can cross products help here?

In the end, these calculations can be performed in the
2D projection as well!

Area() Area() Area()

Area() Area() Area()

QBC AQC ABQ

ABC ABC ABC

41

Interpolating vertex properties

The barycentric coordinates can also be used to
interpolate vertex properties such as:

 material properties
 texture coordinates
 normals

For example:

Interpolating normals, known as Phong
interpolation, gives triangle meshes a smooth
shading appearance. (Note: don’t forget to normalize
interpolated normals.)

 () () () ()d d d dk Q k A k B k C

42

Epsilons

Due to finite precision arithmetic, we do not
always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

43

Intersecting with xformed geometry

In general, objects will be placed using
transformations. What if the object being intersected
were transformed by a matrix M?

Apply M-1 to the ray first and intersect in object (local)
coordinates!

44

Intersecting with xformed geometry

The intersected normal is in object (local) coordinates.
How do we transform it to world coordinates?

45

Summary

What to take home from this lecture:

 The meanings of all the boldfaced terms.
 Enough to implement basic recursive ray

tracing.
 How reflection and transmission directions are

computed.
 How ray-object intersection tests are performed

on spheres, planes, and triangles
 How barycentric coordinates within triangles

are computed
 How ray epsilons are used.

