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Reading

Required:

 Shirley, section 10.1-10.7 (online handout)
 Triangle intersection (online handout)

Further reading:

 Shirley errata on syllabus page, needed if you 
work from his book instead of the handout, 
which has already been corrected.

 T. Whitted. An improved illumination model 
for shaded display. Communications of the 
ACM 23(6), 343-349, 1980. 

 A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. 

 K. Turkowski, “Properties of Surface Normal 
Transformations,” Graphics Gems, 1990, pp. 
539-547. 
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Geometric optics

Modern theories of light treat it as both a wave and 
a particle.  

We will take a combined and somewhat simpler 
view of light – the view of geometric optics.

Here are the rules of geometric optics:

 Light is a flow of photons with wavelengths.  
We'll call these flows “light rays.”

 Light rays travel in straight lines in free space.
 Light rays do not interfere with each other as 

they cross.
 Light rays obey the laws of reflection and 

refraction.
 Light rays travel from the light sources to the 

eye, but the physics is invariant under path 
reversal (reciprocity).
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Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray 
tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray 
tracing)

We will generally follow rays from the eye into the 
scene.
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Precursors to ray tracing

Local illumination

 Cast one eye ray, then shade according to 
light

Appel (1968)

 Cast one eye ray + one ray to light
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Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the 
graphics community.

 Combines eye ray tracing + rays to light
 Recursively traces rays

Algorithm:

1. For each pixel, trace a primary ray in direction V to the 
first visible surface.

2. For each intersection, trace secondary rays:

 Shadow rays in directions Li to light sources
 Reflected ray in direction R.
 Refracted ray or transmitted ray in direction T.
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Whitted algorithm (cont'd)

Let's look at this in stages:



8

Ray casting and local illumination

Now let’s actually build the ray tracer in stages.  
We’ll start with ray casting and local illumination:
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Direct illumination

A ray is defined by an origin P and a unit direction d
and is parameterized by t > 0 :

r(t ) = P + t d

Let  I (P, d) be the intensity seen along a ray.  Then:

I (P, d) = Idirect

where

 Idirect is computed from the Blinn-Phong model 



10

Shading in “Trace”

The Trace project uses a version of the Blinn-Phong
shading equation we derived in class, with two 
modifications:

 Distance attenuation is clamped to be at most 1:

 Shadow attenuation A shadow is included.

Here’s what it should look like:

This is the shading equation to use in the Trace 
project!
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Ray-tracing pseudocode

We build a ray traced image by casting rays through 
each of the pixels.

function traceImage (scene):

for each pixel (i,j) in image

A = pixelToWorld (i,j)

P = COP
d = (A – P )/|| A – P ||

I(i,j) = traceRay (scene, P, d)

end for

end function

function traceRay (scene, P, d):

(t, N, mtrl)   scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade (                                            )

return I

end function
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Shading pseudocode

Next, we need to calculate the color returned by the 
shade function.

function shade (mtrl, scene, Q, N, d):

I  mtrl.ke + mtrl. ka * ILa

for each light source Light do:

atten = Light -> distanceAttenuation ( ) 

L = Light -> getDirection (             )

I  I + atten*(diffuse term + specular term)

end for
return I

end function
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Ray casting with shadows

Now we’ll add shadows by casting shadow rays:
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Shading with shadows

To include shadows, we need to modify the shade 
function:

function shade (mtrl, scene, Q, N, d):

I  mtrl.ke + mtrl. ka * ILa

for each light source Light do:

atten = Light -> distanceAttenuation(Q ) *

Light -> shadowAttenuation( )

L = Light -> getDirection (Q )

I  I + atten*(diffuse term + specular term)

end for
return I

end function
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Shadow attenuation

Computing a shadow can be as simple as checking 
to see if a ray makes it to the light source.  

For a point light source:

function PointLight ::shadowAttenuation (scene, P )

d = getDirection(P )

(t, N, mtrl)  scene.intersect (P, d)

Compute tlight
if (t < tlight) then:

atten = (0, 0, 0)

else
atten = (1, 1, 1)

end if
return atten

end function

Note: we will later handle color-filtered shadowing, 
so this function needs to return a color value.

For a directional light, tlight = ∞.
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Recursive ray tracing with reflection

Now we’ll add reflection:
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Shading with reflection

Let  I (P, d) be the intensity seen along a ray.  Then:

I (P, d) = Idirect + Ireflected

where

 Idirect is computed from the Blinn-Phong model, 
plus shadow attenuation 

 Ireflected = kr I (Q, R)

Typically, we set kr = ks.    (kr is a color value.)
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Reflection

Law of reflection:

i =  r

R is co-planar with d and N.
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Ray-tracing pseudocode, revisited

function traceRay (scene, P, d):

(t, N, mtrl)   scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade (scene, mtrl, Q, N, -d)

R = reflectDirection (                    )

I  I + mtrl.kr  traceRay(scene, Q, R)

return I

end function
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Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:



21

Whitted ray tracing

Finally, we’ll add refraction, giving us the Whitted ray 
tracing model:



22

Shading with reflection and refraction

Let  I (P, d) be the intensity seen along a ray.  Then:

I (P, d) = Idirect + Ireflected + Itransmitted

where

 Idirect is computed from the Blinn-Phong model, 
plus shadow attenuation

 Ireflected = kr I (Q, R) 
 Itransmitted = kt I (Q, T) 

Typically, we set kr = ks and kt = 1 – ks (or (0,0,0), if 
opaque, where kt is a color value).  

[Generally, kr and kt are determined by “Fresnel 
reflection,” which depends on angle of incidence and 
changes the polarization of the light.  This is discussed 
in Shirley’s textbook and can be implemented for 
extra credit.]
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Refraction

Snell's law of refraction:

i sini = t sint

where i , t are indices 
of refraction.

In all cases, R and T are 
co-planar with d and N.

The index of refraction is material dependent.  

It can also vary with wavelength, an effect called 
dispersion that explains the colorful light rainbows 
from prisms.  (We will generally assume no dispersion.)
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Total Internal Reflection

The equation for the angle of refraction can be 
computed from Snell's law:

What happens when i > t ?

When t is exactly 90°, we say that i has achieved the 
“critical angle” c .

For i > c , no rays are transmitted, and only reflection 
occurs, a phenomenon known as “total internal 
reflection” or TIR.
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Shirley uses different symbols.  Here is the translation 
between them:

Also, Shirley has two important errors that have 
already been corrected in the handout.  

But, if you’re consulting the original 2005 text, be sure 
to refer to the errata posted on the syllabus and on 
the project page for corrections.

Shirley’s notation

t

r i

i

t t

n

n

 
  





 





r = R

t = T
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Ray-tracing pseudocode, revisited
function traceRay (scene, P, d):

(t, N, mtrl)   scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade (scene, mtrl, Q, N, -d)

R = reflectDirection (N, -d)

I  I + mtrl.kr  traceRay (scene, Q, R)

if ray is entering object then
n_i = index_of_air

n_t = mtrl.index

else
n_i = mtrl.index

n_t = index_of_air

if (notTIR ( )) then
T = refractDirection (                                        )

I  I + mtrl.kt  traceRay (scene, Q, T)

end if
return I

end function

Q: How do we decide if a ray is entering the object?
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Terminating recursion, incl. refraction

Q: Now how do you bottom out of recursive ray 
tracing?
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Shadow attenuation (cont’d)

Q: What if there are transparent objects along a path 
to the light source?

We’ll take the view that the color is really only at the 
surface, like a glass object with a colored transparency 
coating on it.  In this case, we multiply in the 
transparency constant, kt , every time an object is 
entered or exited, possibly more than once for the 
same object.  



29

Shadow attenuation (cont’d)

Another model would be to treat the glass as solidly 
colored in the interior.  Shirley’s textbook describes a 
the resulting volumetric attenuation based on Beer’s 
Law, which you can implement for extra credit.
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Photon mapping

Combine light ray tracing (photon tracing) and eye ray 
tracing:

…to get photon mapping. 

Renderings by Henrik Wann Jensen:

http://graphics.ucsd.edu/~henrik/
images/caustics.html
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Normals and shading when inside

When a ray is inside an object and intersects the 
object’s surface on the way out, the normal will be 
pointing away from the ray (i.e., the normal always 
points to the outside by default).

You must negate the normal before doing any of the 
shading, reflection, and refraction that follows.

Finally, when shading a point inside of an object, apply 
kt to the ambient component, since that “ambient 
light” had to pass through the object to get there in 
the first place.
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Intersecting rays with spheres

Now we’ve done everything except figure out what that 
“scene.intersect (P, d)” function does.  

Mostly, it calls each object to find out the t value at which the 
ray intersects the object.  Let’s start with intersecting 
spheres…

Given:

 The coordinates of a point along a ray passing through 
P in the direction d are:

 A unit sphere S centered at the origin defined by the 
equation:

Find: The t at which the ray intersects S.
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Intersecting rays with spheres

Solution by substitution:

where

Q: What are the solutions of the quadratic equation in 
t  and what do they mean?

Q: What is the normal to the sphere at a point (x, y, z ) 
on the sphere?

2 2 2

2 2 2
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1 0
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c P P P
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Ray-plane intersection

Next, we will considering intersecting a ray with a 
plane.

To do this, we first need to define the plane equation.

Given a point S on a plane with normal N, how would 
we determine if a point X is on the plane? 

(Hint: start by forming the vector X - S.)

This is the plane equation!
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Ray-plane intersection (cont’d)

Now consider a ray intersecting a plane.  The plane 
has equation:

We can solve for the intersection parameter (and thus 
the point):
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Ray-triangle intersection

To intersect with a triangle, we first solve for the 
equation of its supporting plane.

How might we compute the (un-normalized) normal?

Given this normal, how would we compute k ?

Using these coefficients, we can solve for Q.  Now, we 
need to decide if Q is inside or outside of the triangle.
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3D inside-outside test

One way to do this “inside-outside test,” is to see 
if Q lies on the left side of each edge as we move 
counterclockwise around the triangle.

How might we use cross and products to do this?
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2D inside-outside test

Without loss of generality, we can make this 
determination after projecting down a 
dimension:

If Q’ is inside of A’B’C’, then Q is inside of ABC.

Why is this projection desirable?  

Which axis should you “project away”?
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Barycentric coordinates

As we’ll see in a moment, it is often useful to 
represent Q as an affine combination of A, B, and C:

where:

We call , , and , the barycentric coordinates of Q
with respect to A, B, and C.

Q A B C    

1    
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Computing barycentric coordinates

Given a point Q that is inside of triangle ABC, we can 
solve for Q’s barycentric coordinates in a simple way:

How can cross products help here?

In the end, these calculations can be performed in the 
2D projection as well!

    
Area( ) Area( ) Area( )

        
Area( ) Area( ) Area( )

QBC AQC ABQ

ABC ABC ABC
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Interpolating vertex properties

The barycentric coordinates can also be used to 
interpolate vertex properties such as:

 material properties
 texture coordinates
 normals

For example:

Interpolating normals, known as Phong
interpolation, gives triangle meshes a smooth 
shading appearance.  (Note: don’t forget to normalize 
interpolated normals.)

    ( ) ( ) ( ) ( )d d d dk Q k A k B k C
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Epsilons

Due to finite precision arithmetic, we do not 
always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?
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Intersecting with xformed geometry

In general, objects will be placed using 
transformations.   What if the object being intersected 
were transformed by a matrix M?

Apply M-1 to the ray first and intersect in object (local) 
coordinates!
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Intersecting with xformed geometry

The intersected normal is in object (local) coordinates.  
How do we transform it to world coordinates? 
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Summary

What to take home from this lecture:

 The meanings of all the boldfaced terms.
 Enough to implement basic recursive ray 

tracing.
 How reflection and transmission directions are 

computed.
 How ray-object intersection tests are performed 

on spheres, planes, and triangles
 How barycentric coordinates within triangles 

are computed
 How ray epsilons are used.


