Parametric surfaces

Brian Curless CSE 457 Spring 2015

Reading

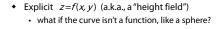
Required:

 Angel readings for "Parametric Curves" lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3, 10.9.4.

Optional

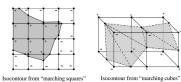
 Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

Mathematical surface representations



• Implicit g(x, y, z) = 0

 $x^{2}+y^{2}+z^{2}=r^{2}$ $g(x,y,z)=x^{2}+y^{2}+z^{2}-r^{2}$



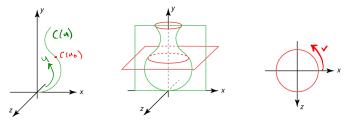
 Parametric S(u, v) = (x(u, v), y(u, v), z(u, v))
For the sphere: x(u, v) = r cos 2πv sin πu y(u, v) = r sin 2πv sin πu z(u, v) = r cos πu

As with curves, we'll focus on parametric surfaces.

3

1

Constructing surfaces of revolution



Given: A curve C(u) in the *xy*-plane:

Let $R_{\nu}(\theta)$ be a rotation about the γ -axis.

Find: A surface S(u, v) which is C(u) rotated about the *y*-axis, where $u, v \in [0, 1]$.

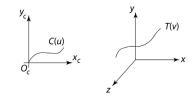
Solution: $\sum (u_1, v_1) = R_{y_1}(2\pi v) C(w)$

4

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface S(u, v) by moving a **profile curve** C(u) along a **trajectory curve** T(v).



More specifically:

- Suppose that C(u) lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along T(v), lay C(u) so that O_c coincides with T(v).

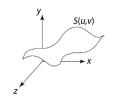
Orientation

The big issue:

• How to orient C(u) as it moves along T(v)?

Here are two options:

1. **Fixed** (or **static**): Just translate O_c along T(v).

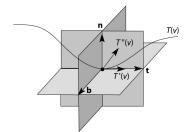


2. Moving. Use the **Frenet frame** of T(v).

- Allows smoothly varying orientation.
- · Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve T(v), we want to attach a smoothly varying coordinate system.



To get a 3D coordinate system, we need 3 independent direction vectors.

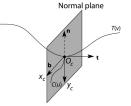
Tangent:t(v) = normalize[T'(v)]Binormal: $b(v) = normalize[T'(v) \times T''(v)]$ Normal: $n(v) = b(v) \times t(v)$

As we move along T(v), the Frenet frame (t, b, n) varies smoothly.

Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the trajectory T(v):

- Put *C*(*u*) in the **normal plane**.
- Place O_c on T(v).
- Align x_c for C(u) with **b**.
- Align y_c for C(u) with -**n**.



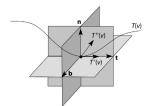
If $\mathcal{T}(\nu)$ is a circle, you get a surface of revolution exactly!

5

8

Degenerate frames

Let's look back at where we computed the coordinate frames from curve derivatives:



Where might these frames be ambiguous or undetermined?

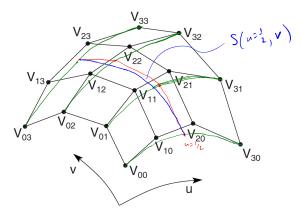
Variations

Several variations are possible:

- Scale C(u) as it moves, possibly using length of T(v) as a scale factor.
- Morph C(u) into some other curve C̃(u) as it moves along T(v).
- ...



Tensor product Bézier surfaces

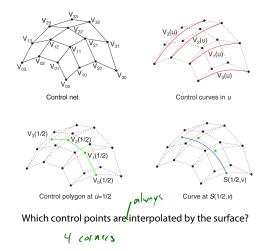


Given a grid of control points V_{iji} , forming a **control net**, construct a surface S(u, v) by:

- treating rows of V (the matrix consisting of the V_{ij}) as control points for curves $V_0(u), \dots, V_n(u)$.
- treating V₀(u),..., V_n(u) as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.

Let's walk through the steps:



11

9

Polynomial form of Bézier surfaces

Recall that cubic Bézier *curves* can be written in terms of the Bernstein polynomials:

$$Q(u) = \sum_{i=0}^{n} V_i b_i(u)$$

A tensor product Bézier surface can be written as:

$$S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i(u) b_j(v)$$

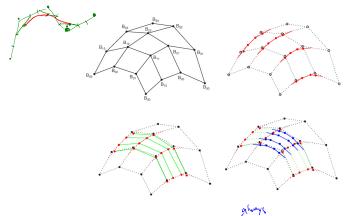
In the previous slide, we constructed curves along u, and then along v. This corresponds to re-grouping the terms like so:

$$S(u,v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n} V_{ij} b_i(u) \right) b_j(v)$$

But, we could have constructed them along v, then u:

$$S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_{j}(v) \right) b_{i}(u)$$

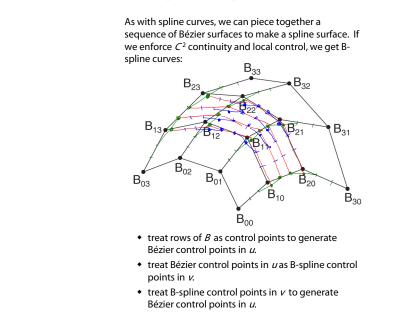
Tensor product B-spline surfaces, cont.



Which B-spline control points are interpolated by the surface?

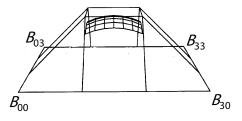
None

Tensor product B-spline surfaces



Tensor product B-splines, cont.

Another example:

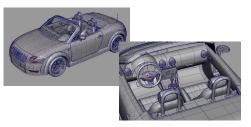


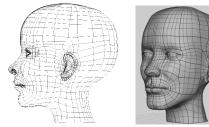
13

16

NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.



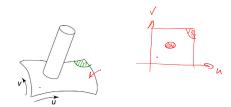


17

Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:



We can do this by **trimming** the u-v domain.

- Define a closed curve in the *u-v* domain (a trim curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.

18

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
 - with a fixed frame
 - with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces