
1

Parametric curves

Brian Curless
CSE 457

Spring 2015

2

Reading

Required:

 Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9

Optional

 Bartels, Beatty, and Barsky. An Introduction
to Splines for use in Computer Graphics and
Geometric Modeling, 1987.

 Farin. Curves and Surfaces for CAGD: A
Practical Guide, 4th ed., 1997.

3

Mathematical curve representation

 Explicit: y =f (x)
• what if the curve isn’t a function, e.g., a circle?

 Implicit: g (x, y) = 0

 Parametric: Q (u) = (x (u), y (u))
• For the circle:

x (u) = cos 2u
y (u) = sin 2u

4

Parametric polynomial curves

We’ll use parametric curves, Q (u)=(x (u), y (u)), where
the functions are all polynomials in the parameter.

Advantages:

 easy (and efficient) to compute
 infinitely differentiable (all derivatives above the

n th derivative are zero)

We’ll also assume that u varies from 0 to 1.

Note that we’ll focus on 2D curves, but the
generalization to 3D curves is completely
straightforward.

5

We will now build a curve geometrically, and then
show how it is a parametric polynomial curve.

We start with control points {V1, V2, V3, V4} and
connect them together to make a control polygon.

We then recursively subdivide:

What if u = 0?

What if u = 1?

de Casteljau’s algorithm

6

Recursive notation:

What is the equation for ?

de Casteljau’s algorithm, cont’d

1
0V

7

Finding Q(u)

Let’s solve for Q(u):

1
0 0 1
1

1 1 2
1
2 2 3

2 1 1
0 0 1
2 1 1

1 1 2

2 2
0 1

1 1 1 1
0 1 1 2

0 1 1 2
3 2

0 1

(1-)

(1-)

(1-)

(1-)

(1-)

() (1-)

(1-)[(1-)] [(1-)]

(1-)[(1-){(1-) } {(1-) }] ...

(1-) 3 (1-)

V u V uV

V u V uV

V u V uV

V u V uV

V u V uV

Q u u V uV

u u V uV u u V uV
u u u V uV u u V uV

u V u u V

 2 3
2 3

2 3
0 0 1 0 1 2 0 1 2 3

2 3
0, 0, 1, 0, 1, 2, 0, 1, 2, 3,

2
0, 0, 1, 0, 1, 2, 0, 1, 2,

3 (1-)

 (3 3) (3 6 3) (3 3)

(3 3) (3 6 3) (3 3)

(3 3) (3 6 3) (3 3
x x x x x x x x x x

y y y y y y y y y

u u V u V

V V V u V V V u V V V V u

V V V u V V V u V V V V u

V V V u V V V u V V V V

 3
3,)y u

8

Finding Q(u) (cont’d)

In general,

where “n choose i ” is:

This defines a class of curves called Bézier curves.

We can also write this as:

where the are the Bernstein polynomials:

Q: If we have n control points, what is the polynomial
order of the curve?

0

() (1)
n

i n i
i

i

n
Q u u u V

i

!

()! !

n n

i n i i

() (1)n i n i
i

n
b u u u

i

9

Bernstein polynomials

For degree 3, the Bernstein polynomials are:

Useful properties (for Bernstein polynomials of any degree) on
the interval [0,1]:

 The sum of all four is exactly 1 for any u. (We say the
curves form a “partition of unity”).

 Each polynomial has value between 0 and 1.

These together imply that the curve is generated by convex
combinations of the control points and therefore lies within
the convex hull of those control points.

The convex hull of a point set is the smallest convex polygon
(in 2D) or polyhedron (in 3D) enclosing the points. In 2D, think
of a string looped around the outside of the point set and then
pulled tightly around the set.

10

Displaying Bézier curves

How could we draw one of these things?

11

Curve desiderata

Bézier curves offer a fairly simple way to model
parametric curves.

But, let’s consider some general properties we would
like curves to have…

12

Local control

One problem with Béziers is that every control point
affects every point on the curve (except the
endpoints).

Moving a single control point affects the whole curve!

We’d like to have local control, that is, have each
control point affect some well-defined neighborhood
around that point.

13

Interpolation

Bézier curves are approximating. The curve does
not (necessarily) pass through all the control points.
Each point pulls the curve toward it, but other points
are pulling as well.

We’d like to have a curve that is interpolating, that is,
that always passes through every control point.

14

Continuity

We want our curve to have continuity: there
shouldn’t be any abrupt changes as we move along
the curve.

“0th order” continuity would mean that curve doesn’t
jump from one place to another.

We can also look at derivatives of the curve to get
higher order continuity.

15

1st and 2nd Derivative Continuity

First order continuity implies continuous first
derivative:

Let’s think of u as “time” and Q(u) as the path of a
particle through space. What is the meaning of the
first derivative, and which way does it point?

Second order continuity means continuous second
derivative:

What is the intuitive meaning of this derivative?

()

'()
dQ u

Q u
du

2

2

()
''()

d Q u
Q u

du

16

Cn (Parametric) Continuity

In general, we define C n continuity as follows:

Note: these are nested degrees of continuity:

C -1: C 0:

C 1, C 2 : C 3, C 4, …:

 ()

() is continuous

iff

()
() is continuous for 0

n

i
i

i

Q u C

d Q u
Q u i n

du

17

Bézier curves splines

Bézier curves have C-infinity continuity on their
interiors, but we saw that they do not exhibit local
control or interpolate their control points.

It is possible to define points that we want to
interpolate, and then solve for the Bézier control
points that will do the job.

But, you will need as many control points as
interpolated points -> high order polynomials ->
wiggly curves. (And you still won’t have local control.)

Instead, we’ll splice together a curve from individual
Béziers segments, in particular, cubic Béziers.

We call these curves splines.

The primary concern when splicing cuves together is
getting good continuity at the endpoints where they
meet…

18

Ensuring C0 continuity

Suppose we have a cubic Bézier defined by
(V0,V1,V2,V3), and we want to attach another curve
(W0,W1,W2,W3) to it, so that there is C 0 continuity at
the joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

19

The C0 Bezier spline

How then could we construct a curve passing through
a set of points P1…Pn?

We call this curve a spline. The endpoints of the
Bezier segments are called joints. All other Bezier
points (i.e., not endpoints) are called inner Bezier
points; these points are generally not interpolated.

In the animator project, you will construct such a
curve by specifying all the Bezier control points
directly.

20

For degree 3 (cubic) curves, we have already shown
that we get:

We can expand the terms in u and rearrange to get:

What then is the first derivative when evaluated at
each endpoint, u = 0 and u = 1?

1st derivatives at the endpoints

21

Ensuring C1 continuity

Suppose we have a cubic Bézier defined by
(V0,V1,V2,V3), and we want to attach another curve
(W0,W1,W2,W3) to it, so that there is C 1 continuity at
the joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

22

The C1 Bezier spline

How then could we construct a curve passing through
a set of points P0…Pn?

We can specify the Bezier control points directly, or we
can devise a scheme for placing them automatically…

23

Catmull-Rom splines

If we set each derivative to be one half of the vector
between the previous and next controls, we get a
Catmull-Rom spline.

This leads to:

24

Catmull-Rom to Beziers

We can write the Catmull-Rom to Bezier
transformation as:

25

Endpoints of Catmull-Rom splines

We can see that Catmull-Rom splines don’t interpolate
the first and last control points.

By repeating those control points, we can force
interpolation.

26

We can give more control by exposing the derivative
scale factor as a parameter:

The parameter controls “slackness.” Catmull-Rom
uses = 1/2. Here’s an example with =3/2.

Tension control

27

2nd derivatives at the endpoints

Finally, we’ll want to develop C 2 splines. To do this,
we’ll need second derivatives of Bezier curves.

Taking the second derivative of Q (u) yields:

28

Ensuring C2 continuity

Suppose we have a cubic Bézier defined by
(V0,V1,V2,V3), and we want to attach another curve
(W0,W1,W2,W3) to it, so that there is C 2 continuity at
the joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

29

Building a complex spline

Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-frames in
order to build a C 2 continuous spline.

These are called B-splines. The starting set of points
are called de Boor points.

30

B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the de
Boor points?

31

B-splines to Beziers

We can write the B-spline to Bezier transformation as:

32

Endpoints of B-splines

As with Catmull-Rom splines, the first and last control
points of B-splines are generally not interpolated.

Again, we can force interpolation by repeating the
endpoints…twice.

33

In the animator project, you will draw a curve on the
screen:

You will actually treat this curve as:

Where is a variable you want to animate. We can
think of the result as a function:

In general, you have to apply some constraints to
make sure that (t) actually is a function.

Curves in the animator project

 () (), ()u x u y uQ

() ()

() ()

u y u

t u x u

()t

34

35

What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is easy:

Closing the loop

36

Drawing Bézier curves, revisited

Let’s return to the question of how to draw Bezier
curves, the building block for splines. Consider a set of
Bézier control points are arranged as follows:

How many line segments do you really need to draw?

It would be nice if we had an adaptive algorithm, that
would take into account flatness.

DisplayBezier(V0, V1, V2, V3)

begin
if (FlatEnough(V0, V1, V2, V3))

Line(V0, V3);
else

something;
end;

37

Subdivide and conquer

DisplayBezier(V0, V1, V2, V3)

begin
if (FlatEnough(V0, V1, V2, V3))

Line(V0, V3);
else

Subdivide(V[]) L[], R[]
DisplayBezier(L0, L1, L2, L3);
DisplayBezier(R0, R1, R2, R3);

end;

38

Testing for flatness

Compare total length of control polygon to
length of line connecting endpoints:

39

Reparameterization

We have so far been considering parametric
continuity, derivatives w.r.t. the parameter u.

This form of continuity makes sense particularly if we
really are describing a particle moving over time and
want its motion (e.g., velocity and acceleration) to be
smooth.

But, what if we’re thinking only in terms of the shape
of the curve? Is the parameterization actually intrinsic
to the shape, i.e., is it the case that a shape has only
one parameterization?

40

Arc length parameterization

We can reparameterize a curve so that equal steps in
parameter space (we’ll call this new parameter “s”)
map to equal distances along the curve:

We call this an arc length parameterization. We can
re-write the equal step requirement as:

Looking at very small steps, we find:

41

Gn (Geometric) Continuity

Now, we define geometric G n continuity as follows:

Where Q (s) is parameterized by arc length.

The first derivative still points along the tangent, but
its length is always 1.

G n continuity is usually a weaker constraint than C n
continuity (e.g., “speed” along the curve does not
matter).

()

() is continuous

iff

()
() is continuous for 0

n

i
i

i

Q s G

d Q s
Q s i n

ds

42

Gn Continuity (cont’d)

The second derivative now has a specific geometric
interpretation. First, the “osculating circle” at a point on
a curve can be defined based on the limit behavior of
three points moving toward each other:

The second derivative Q ’’(s) then has these properties:

where r (s) and c(s) are the radius and center of O (s),
respectively, and k (s) is the “curvature” of the curve at s.

1
() ()

()
Q s s

r s
 () () ()Q s s Q sc

c
r

43

Rational polynomial curves

Remarkably, parametric polynomial curves cannot
represent something as simple as a circle!

BUT, ratios of polynomials can. We can write these in
terms of homogeneous coordinates, which we then
normalize:

The equations above describe a rational Bézier curve.

It can be represented in terms of control points, but
now we add the homogenous dimension. So for a 2D
curve, we have control points with three components
(lofted up into 3D), where the homogenous component
can be something other than 1.

0

0

0

2

()

() ()

()

n
k

k
k

n
k

k
k

n
k

k
k

D

x u a u

Q u b uy u

c uw u

0 0

0 0

2 ()

n n
k k

k k
k k

n n
k k

k k
k k

D

a u c u

Q u
b u c u

1

0

n

k
k

k

c u

Normalize

44

Rational polynomial curves (cont’d)

What do we get for the following curve?

Q: How does Illustrator represent a circle?

2
2

2

2
() 1

1
D

u
Q u u

u

45

NURBS

In general, we can spline together rational Bézier
curves, to get things like rational B-splines.

Another thing we can do is vary the range of u so that
it is not always [0..1] in each Bézier segment of a spline.
E.g, it could be [0..1] in one segment and then [0..2] in
the next.

The u-range affects placement of control points. The
result is a non-uniform spline.

A very common type of spline is a Non-Uniform
Rational B-Spline or NURBS.

(The “B” in B-spline technically stands for “Basis.”)

46

Summary

What to take home from this lecture:

 Geometric and algebraic definitions of Bézier
curves.

 Basic properties of Bézier curves.
 How to display Bézier curves with line segments.
 Meanings of C k continuities.
 Geometric conditions for continuity of cubic

splines.
 Properties of B-splines and Catmull-Rom splines.
 Geometric construction of B-splines and Catmull-

Rom splines.
 How to construct closed loop splines.

