
Assigned: Tuesday, February 25th

Due: Sunday, March 9th

Project TA: Mason Remy

Agenda
 Introduction

 Curve implementation

- Requirements

-What are all those vectors?

-Where should I put things?

 Particle System

- Requirements

-What should I implement?

- Suggestions

- Cool forces

Agenda
 Extra credit ideas

 Animating well vs. well… just animating

 Timing!

 Music

 Light

 Lasseter’s animation principles

 Creating your artifact

 Selecting a curve type

 Compositing

Introduction
 How to integrate with my model?

 just replace sample.cpp with your model

 better to do this sooner than later

 Modeler View vs. Curves View

 Graph Widget Interface

Spline Curves

Requirements

 Bezier curve
 can linearly interpolate in cases where there are not

enough control points (< 4 or for the last couple in
your set)

 B-spline
 Catmull-Rom

 curve must be a function!
 sample solution is not perfectly correct; you must do at least

as well as sample.

Curve Implementation

What are all those vectors?

In any specific curveEvaluator class

 ptvCtrlPts: a collection of control points that you specify in
the curve editor

 ptvEvaluatedCurvePts: a collection of evaluated curve points
that you return from the function calculated using the curve
type’s formulas

 fAniLength: maximum time that a curve is defined

 bWrap: a flag indicating whether or not the curve should be
wrapped

Curve Implementation

Vector Reference

For those of you not familiar with C++ vectors:

 A vector is a standard C++ data structure that acts like a
dynamically resizable array (like an ArrayList in Java)

 A nice reference for vectors (one of many online):
http://www.cplusplus.com/reference/stl/vector/

 Vectors often use iterators, which you can read about with
some simple examples here:
http://www.cppreference.com/wiki/stl/iterators

http://www.cplusplus.com/reference/stl/vector/
http://www.cppreference.com/wiki/stl/iterators

Curve Implementation

Where should I put things?
 Create curve evaluator classes for each that inherit from

CurveEvaluator
 Bezier

 B-spline

 Catmull-Rom

 In GraphWidget class
 Change the skeleton to call your new constructors in the GraphWidget class.

 Right now all the UI is set up for your new curve types, but they all call the

constructor for the LinearCurveEvaluator class.

Particle System

Requirements
 Particle System class

 Should have pointers to all particles and a marching variable
(time) for simulation

 If you have two separate simulations (say, cloth sim and
particles that respond to viscous drag) you may want to make
that distinction here (as well as in your force and particle
implementation)

 Solver
 In the skeleton, this actually exists within the Particle System

class

 Particles

Particle System

Requirements
 Two distinct forces

 Distinct may mean forces whose values are calculated with different
equations (gravity and drag are distinct because gravity eq is of form f=ma,
where drag is defined in terms of a drag coefficient and velocity)

 Alternatively (and better): distinct may mean that one force is a unary
force and another is a n-ary force or spatially driven force

 Collision detection
 With one primitive of your choice

 Restitution coefficient must be slider controlled

Particle System

What should I implement?
 Canonical components

 Constructor

 Destructor

 etc

 Simulation functions
 drawParticles()

 startSimulation()

 computeForcesAndUpdateParticles()

 stopSimulation()

Particle System

What should I implement?
 Particle struct or class

 you may have several of these if you have multiple types of simulations

 If this is the case, take advantage of inheritance

 Force class
 An elegant implementation would include a generic Force class and a variety

of distinct forces that inherit from it

*Note: I stress inheritance because it will make your implementation
easier (and less messy) and in general will make your life easier. If
the TA that grades your project must look at your code, clean object
oriented code is a great headache-prevention-tool.

Particle System

Embedding in your hierarchy
 Need to find World Coordinates of Particles

- Model View Matrix

- Inverse Camera Transformation

- Generate world coordinate for particles by undoing
camera transformations to the point you want to launch
from.

- Note the provided pseudo-code and
getModelViewMatrix() on the animator project page

 Euler Method

 Hooking up your particle System

Particle System

Cool Forces

 Particles in a lattice

 Cloth simulation

 Deformable objects

 Flocking

 Will require multiple forces:

 Attractive force that affects far away particles

 Repulsive force that affects nearby particles

 What else?

Extra Credit ideas
 Tension control for Catmull-Rom

 Interpolating splines are cool because keyframing the parameter values that
you want is more intuitive…

 But what about the time instances not keyed? Without control of curve
tension, you may not get the parameter values that you would really like, and
your animation could suffer

 Allow control points to have C0, C1, or C2 continuity
 This can be VERY helpful in creating a good animation

 Initialize particle velocity with velocity of model hierarchy
node to which it is attached
 This is fairly easy and will make your particle system noticeably more realistic

Extra Credit ideas
 Billboarding

 Adding support for sprites (billboarding) can DRASTICALLY
increase the aesthetic quality of your simulation

 Additional benefit: very easy to ‘skin’ particles and make
multiple instance of same particle look unique

 Baking
 A must for complicated simulations or for particle systems with a

lot of particles

Extra Credit ideas
 Better collision detection

 Better forces

 Lens flare
 Most animator artifacts suffer from lack of realistic looking

lighting

 Ideally, this problem would be solved with ray tracing or photon
mapping

 Since these are probably not options, lens flare is an alternative
way to give the impression of interesting lighting

Animating well
vs.

well… just animating

 Above all else, keep it simple:

 You have limited time

 You have a limited program (well, unless you

implement a lot of bells and whistles)

 If you make realistic goals, then meet them, you

can use the extra time to add more shots and

eye candy.

 Complicated is not necessarily better

Animating well
vs.

well… just animating

 Have a plan

 Though it seems simple, it’s a lot easier to plan and iterate

your animation on paper

 Even if you don’t draw, it’s much easier to sketch out

your key poses on paper, then implement them in

animator

 If you decide a pose or shot doesn’t work on paper, you

can make a new one in a couple minutes. If you find out a

shot doesn’t work after it’s rendered, you have to get rid

of potentially hours worth of work

Animating well
vs.

well… just animating

 Timing!

 Timing is VERY, VERY important

 Consider timing before you bother to get

specific about joint rotations or object positions

 Don’t forget you can change the animation

length of your shots

Animating well
 Music!

 Sound and music can greatly enhance the cohesion of your artifact

 If your artifact idea includes a theme or stylization, it can be very

effective to time your animation with events in the theme music.

Animating well

 Light!
 Like sound, light is very important compositionally

 Anything you can do to be creative with lighting will help

Light vs. No light

Animating well

 Use the animation principles
 See John Lasseter’s article on animation principles

 See the lecture notes on animation principles

 Remember, well animated grey models are a lot more entertaining than

poorly animated complicated ones. That’s why the first animated shorts

ever (The Adventures of Andre and Wally B, Knick Knack, etc.) are still

entertaining

Creating Your Artifact
 Choice of curve types

 Bezier Curves

 Recall the animation of a bouncing ball

 When the ball hits the ground, the curve describing its position should
have a C1 discontinuity

 Without C1 discontinuity here, the animation will look wrong

 Catmull-Rom is usually the preferred curve choice…
 but unless your project supports the option to add C1

discontinuity at will, you might find yourself trying to fight the
Catmull-Rom to create pauses and other timing goodies

Creating Your Artifact
 Compositing

 Recommended that you break your intended artifact up into
shorter clips combining them all in the end.

 This will make your life easier for many reasons:
 Splitting up work is straightforward
 Changing camera angles is GOOD for a composition
 You can incrementally complete your artifact

 Adobe Premiere
 Play around with it, check the website for some details on how to use it. The

user interface is pretty intuitive.

Any Questions?

Email the staff!

Cse457-staff@cs.washington.edu

Post on the discussion board (linked from the

project page)

mailto:Cse457-staff@cs.washington.edu

