

Checking out, building, and using the sample
solution
Part 1: Surface of Revolution
Part 2: Hierarchical Modeling
Part 3: Blinn-Phong Shader
Part 4: Custom Shader(s)

Use Gitlab, just like for Impressionist
Detailed instructions are in the project
description

Go to your project folder
Double-click the .vcxproj file
Configuration menu next to green arrow

 Debug – lets you set breakpoints

 Release – for turn-in

Pick Debug, then click the green arrow next
to it to build and run your project (Hotkey: F5)
Let us know if the skeleton doesn’t build!

List of
Controls

Control
Groups View of your model

Move the camera by dragging
the mouse while holding down:

Left button: rotate the
view like a huge trackball.

Right button (or left button +
CTRL): zoom in/out

Middle button (or left button +
SHIFT): pan

Partner A: Modeling

 Part 1: Surface of
revolution

 Part 2: Hierarchical
Modeling

Partner B: Shading

 Part 3: Blinn-Phong
Shader

 Part 4: Custom Shader(s)

NOTE: this division of
labor is just a
suggestion!

You will write OpenGL code to draw a
surface by rotating a curve.
Each vertex must have an appropriate:
 Texture coordinate pair
 Vertex normal
 Position
Replace code for drawRevolution() in
modelerdraw.cpp
 The divisions variable determines number

of slices
 Current skeleton implementation is a naïve

and incorrect one, but illustrates how curve
files can be changed into geometry

Load new curve with File->”Load
Revolution Curve File”

Drawing a curve

 Using the curve editor
tool

 Start by left click with
ctrl key on

 Save dense point
samples into .apts file

 Load point samples in
modeler

A curve file is basically a .txt
file with a list of x,y
coordinates for control points
.apts

 Densely sampled points on a
curve

.cfg: curve configuration file

 Row 1: sample density

 Row 2: curve interpolation
method

Divide the surface into
“bands” by longitude
Compute vertex positions
and normals

 Using sin(), cos() in C++ code

 See lecture notes for normal
computation

Connect the dots with
OpenGL triangles

Use glDrawElements
with GL_TRIANGLES
(required!)
The order of vertices
matters

 Right-hand rule

It’s okay to use glBegin(), glEnd() for testing shapes,
but don’t use them in the final submitted code
Don’t use GL_QUAD_STRIP or
GL_TRIANGLE_STRIP in the final submission,
either.

In the submitted code, you need to build a triangle
mesh and send it to OpenGL

 Using glDrawElements with GL_TRIANGLES

This is an overly simplified example of

drawing a plane using glDrawElements.

The plane consists of two connecting

triangles and the normal vectors of all

vertices are pointing up.

// preparing the data for the vertices’ positions

GLfloat vertices[12] = { 0,0,0, 0,0,-1, 1,0,0, 1,0,-1 };

// normal directions

GLfloat normals[12] = {0,1,0, 0,1,0, 0,1,0, 0,1,0};

// texture coordinates

GLfloat texture_uv[8] = {0,0, 0,1, 1,0, 1,1};

// vertex indices in order to form triangles

// (order of the vertices follows the right hand rule)

const int indices_length = 6;

GLuint indices[indices_length] = { 1,0,2, 1,2,3 };

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_NORMAL_ARRAY);

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, vertices);

glNormalPointer(GL_FLOAT,0,normals);

glTexCoordPointer(2,GL_FLOAT,0,texture_uv);

glDrawElements(GL_TRIANGLES, indices_length

,GL_UNSIGNED_INT, indices);

glDisableClientState(GL_TEXTURE_COORD_ARRAY);

glDisableClientState(GL_NORMAL_ARRAY);

glDisableClientState(GL_VERTEX_ARRAY);

See lecture slides for
texture mapping
 Basic idea: use longitude

and arc length (curve
distance) as texture
coordinates

Each vertex must have an
appropriate:
 Vertex normal

 Position

 Texture Coordinate Pair
▪ u,v Є [0,1]

You must make a
character with:

 2 levels of branching

 Something drawn at
each level

 Meaningful controls
▪ Otherwise, you will be

overwhelmed when you
animate it!

You will need to:

 Extend the Model class

 Override the draw()
method

 Add properties that
Modeler users can control

 Give an instance of your
class to
ModelerUserInterface in
the main() function

In sample.cpp, the
Scene class extends
Model

 draw() method draws
the green floor, sphere,
cylinder, etc.

 Add and replace with
drawing commands of
your own

You can use these draw
commands as OpenGL
references

 Modelerdraw.cpp
▪ drawBox

▪ drawCylinder

▪ drawRevolution

Add a new radio
button for your scene
at the end of the list

Kinds of properties (in
properties.h):

 BooleanProperty = checkbox

 RangeProperty = slider

 RGBProperty = color

 ChoiceProperty = radio buttons

Need to add it to:

1. Class definition

2. Constructor

3. Property list

See sample.cpp for example

glEnable()/glDisable() changes state
Once you change something, it stays that
way until you change it to something new
OpenGL’s state includes:

 Current color

 Transformation matrices

 Drawing modes

 Light sources

Just two of them: projection and modelview.
We’ll modify modelview.
Matrix applied to all vertices and normals
These functions multiply transformations:
glRotated(), glTranslated(), glScaled()
Applies transformations in REVERSE order
from the order in which they are called.
Transformations are cumulative. Since
they’re all “squashed” into one matrix, you
can’t “undo” a transformation.

How do we get back to an earlier
transformation matrix?
We can “remember” it

 OpenGL maintains a stack of matrices.

 To store the current matrix, call glPushMatrix().

 To restore the last matrix you stored, call
glPopMatrix().

Draw the body
Use glPushMatrix() to
remember the current
matrix.
Imagine that a matrix
corresponds to a set of
coordinate axes:
 By changing your

matrix, you can move,
rotate, and scale the
axes OpenGL uses.

Apply a transform:

 glRotated()

 glTranslated()

 glScaled()

Here, we apply
glTranslated(1.5,2,0)

 All points translated 1.5
units left and 2 units up

 It’s as if we moved our
coordinate axes!

Old axes

Current axes

Draw an ear.

 This ear thinks it was
drawn at the origin.

Transformations let us
transform objects
without changing their
geometry!

 We didn’t have to edit
that ear’s drawing
commands to transform
it

Old axes

Current axes

Call glPopMatrix() to
return to the body’s
coordinate axes.
To draw the other ear,
call glPushMatrix()
again…

Apply another
transform…

 Where will the ear be
drawn now?

Old axes

Current axes

Draw the other ear

Old axes

Current axes

Then, call
glPopMatrix() to return
to the body’s “axes”

 Technically, you don’t
need to if that second
ear is the last thing you
draw.

 But what if you wanted
to add something else to
the body?

Make sure there’s a
glPopMatrix() for every
glPushMatrix()!

 You can divide your
draw() function into a
series of nested
methods, each with a
push at the beginning
and a pop at the end.

Your scene must have
two levels of branching
like in this diagram.
 Circles are objects
 Arrows are

transformations
Call glPushMatrix() after
drawing green, so you
can draw orange after
drawing red
 Do the same for orange
You must draw
something at each level.

Needs to control multiple aspects of your
model.

 Example: Rotate multiple joints at once

Don’t get too complicated!

 Wait for Animator in four weeks!

We provide a
directional light shader
in OpenGL Shading
Language (GLSL)
You must extend it to
support point lights.

Files to edit:

 shader.frag – your
fragment shader

 shader.vert – your vertex
shader

modeler_solution.exe
in your project folder

 Loads your shader.frag
and shader.vert.

 Also contains our
sample shaders.

Use radio buttons to
compare with sample
solution

Choose shader here

gl_LightSource[i].position.xyz – the position
of light source i.
gl_FrontLightProduct[i] – object that stores
the product of a light’s properties with the
current surface’s material properties:

 Example: gl_FrontLightProduct[i].diffuse ==
gl_FrontMaterial.diffuse *
gl_LightSource[i].diffuse

Anything you want!
Can earn extra credit!
Ask TA’s for estimated extra credit value of an option.
See the OpenGL orange book in the lab for details +
code.
Can still use sample solution to test (depending on
complexity)

Warnings
 Don’t modify any files except your model file and the

required modifications

 Or, your model might not work in Animator (project 4)

Make sure that your repository works by:
 Cloning or pulling the latest updates

 Building it

 Tweaking something

 Committing
Do this on each work environment you plan to use,
even if you aren’t going to start work yet:
 Lab machines

 Your home computer

 The sooner we know of a problem, the sooner we can fix it.

 Remember that we’ll grade using the lab machines!

In general, never put anything besides source
code into source control:
 Debug and Release folders

 Modeler.suo

 Modeler.ncb

 *.user files
DO put source files (*.cpp, *.h, *.vcproj,
image files, etc.) in the repository
 Make sure you both add AND commit the files.

THINGS TO DO

Partner A: Modeling
 Part 1: Surface of revolution

 Part 2: Hierarchical Modeling

Partner B: Shading
 Part 3: Blinn-Phong Shader

 Part 4: Custom Shader(s)

You don’t have to divide
work up this way!

WARNINGS

Don’t modify any files
except your model file and
the required modifications
 Or, your model might not

work in Animator

Make sure you can pull,
commit, and build!

Try adjusting the sample model

 Let us know if you have problems

COMMIT BEFORE LOGOFF!

 Your files in C:\User\... will go away when you log
out, due to Deep Freeze!

