
Ray Tracing

CSE 457

Ray Tracing in the movie Cars!

All previous Pixar movies were renderd with scanline !
rendering – shadow maps, reflection maps!
But cars are very shiny and reflective !

Ray Tracing in Cars !

1000 light sources, very fine
shadow detail!

Typical scene at Pixar!
•  1000s lights!
•  1000s textures!
•  10000s objects !
•  100Ms objects !
•  Huge shaders!

8

Reading

Required:

w  Shirley, section 10.1-10.7 (online handout)
w  Triangle intersection (online handout)

Further reading:

w  Shirley errata on syllabus page, needed if
you work from his book instead of the
handout, which has already been
corrected.

w  T. Whitted. An improved illumination model
for shaded display. Communications of the
ACM 23(6), 343-349, 1980.

w  A. Glassner. An Introduction to Ray
Tracing. Academic Press, 1989.

w  K. Turkowski, “Properties of Surface
Normal Transformations,” Graphics Gems,
1990, pp. 539-547.

9

Geometric optics

Modern theories of light treat it as both a wave
and a particle.

We will take a combined and somewhat simpler
view of light – the view of geometric optics.

Here are the rules of geometric optics:

w  Light is a flow of photons with
wavelengths. We'll call these flows “light
rays.”

w  Light rays travel in straight lines in free
space.

w  Light rays do not interfere with each other
as they cross.

w  Light rays obey the laws of reflection and
refraction.

w  Light rays travel from the light sources to
the eye, but the physics is invariant under
path reversal (reciprocity).

10

Eye vs. light ray tracing

At the eye: eye ray tracing (a.k.a., backward
ray tracing)

We will generally follow rays from the eye into
the scene.

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray
tracing or photon tracing)

11

Precursors to ray tracing

Local illumination

w  Cast one eye ray, then shade according
to light

Appel (1968)

w  Cast one eye ray + one ray to light

12

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the
graphics community.

w  Combines eye ray tracing + rays to light
w  Recursively traces rays

Algorithm:

1.  For each pixel, trace a primary ray in direction V to
the first visible surface.

2.  For each intersection, trace secondary rays:

w  Shadow rays in directions Li to light sources
w  Reflected ray in direction R.
w  Refracted ray or transmitted ray in direction T.

13

Whitted algorithm (cont'd)

Let's look at this in stages:

L = light
(shadow rays)

V = primary rays

R = reflected

T = transmitted
(or refracted) PP

14

Ray casting and local illumination

Now let’s actually build the ray tracer in
stages. We’ll start with ray casting and local
illumination:

15

Direct illumination

A ray is defined by an origin P and a unit direction
d and is parameterized by t > 0:

r(t) = P + td

Let I(P, d) be the intensity seen along a ray.
Then:

I(P, d) = Idirect

where

w  Idirect is computed from the Blinn-Phong
model

16

Shading in “Trace”

The Trace project uses a version of the Blinn-
Phong shading equation we derived in class, with
two modifications:

w  Distance attenuation is clamped to be at most
1:

w  Shadow attenuation Ashadow is included.

Here’s what it should look like:

This is the shading equation to use in the Trace
project!

1min 1,dist
jA

⎧ ⎫⎪ ⎪
= ⎨ ⎬

⎪ ⎪⎩ ⎭
2

j j j j ja +b r +c r

() ()
+

⎡ ⎤⋅ ⋅
⎣ ⎦∑ j j

shadow distA A B N H s

e a La

n
L, j j d j s j

j

I = k + k I +

I k + kN L

17

Ray-tracing pseudocode

We build a ray traced image by casting rays
through each of the pixels.

function traceImage (scene):

 for each pixel (i,j) in image
 A = pixelToWorld(i,j)
 P = COP
 d = (A - P)/|| A – P||
 I(i,j) = traceRay(scene, P, d)
 end for

end function

function traceRay(scene, P, d):

 (t, N, mtrl) ← scene.intersect (P, d)
 Q ß ray (P, d) evaluated at t
 I = shade()
 return I

end function

18

Shading pseudocode

Next, we need to calculate the color returned by
the shade function.

function shade(mtrl, scene, Q, N, d):

 I ← mtrl.ke + mtrl. ka * ILa
 for each light source Light do:
 atten = Light ->

distanceAttenuation()
 L = Light -> getDirection ()
 I ← I + atten*(diffuse term + specular

term)
 end for
 return I

end function

19

Ray casting with shadows

Now we’ll add shadows by casting shadow
rays:

20

Shading with shadows

To include shadows, we need to modify the
shade function:

function shade(mtrl, scene, Q, N, d):

 I ← mtrl.ke + mtrl. ka * ILa
 for each light source Light do:
 atten = Light ->

distanceAttenuation(Q) *
 Light ->

shadowAttenuation()
 L = Light -> getDirection (Q)
 I ← I + atten*(diffuse term + specular

term)
 end for
 return I

end function

21

Shadow attenuation

Computing a shadow can be as simple as
checking to see if a ray makes it to the light
source.
For a point light source:

function PointLight::shadowAttenuation(scene,
P)

 d = getDirection(P)
 (t, N, mtrl) ← scene.intersect(P, d)
 Compute tlight
 if (t < tlight) then:
 atten = (0, 0, 0)
 else
 atten = (1, 1, 1)
 end if
 return atten

end function

Note: we will later handle color-filtered
shadowing, so this function needs to return a
color value.
For a directional light, tlight = ∞.

22

Recursive ray tracing with reflection

Now we’ll add reflection:

23

Shading with reflection

Let I(P, d) be the intensity seen along a ray.
Then:

I(P, d) = Idirect + Ireflected

where

w  Idirect is computed from the Blinn-Phong
model, plus shadow attenuation

w  Ireflected = kr I (Q, R)

Typically, we set kr = ks. (kr is a color value.)

24

Reflection

Law of reflection:

θi = θr

R is co-planar with d and N.

25

Ray-tracing pseudocode, revisited

function traceRay(scene, P, d):
 (t, N, mtrl) ← scene.intersect (P, d)
 Q ß ray (P, d) evaluated at t
 I = shade(scene, mtrl, Q, N, -d)
 R = reflectDirection()
 I ← I + mtrl.kr * traceRay(scene, Q, R)
 return I

end function

26

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

27

Whitted ray tracing

Finally, we’ll add refraction, giving us the Whitted
ray tracing model:

28

Shading with reflection and refraction

Let I(P, d) be the intensity seen along a ray.
Then:

 I(P, d) = Idirect + Ireflected + Itransmitted

where

w  Idirect is computed from the Blinn-Phong
model, plus shadow attenuation

w  Ireflected = kr I (Q, R)
w  Itransmitted = ktI (Q, T)

Typically, we set kr = ks and kt = 1 – ks (or (0,0,0),
if opaque, where kt is a color value).

[Generally, kr and kt are determined by “Fresnel
reflection,” which depends on angle of incidence
and changes the polarization of the light. This is
discussed in Shirley’s textbook and can be
implemented for extra credit.]

29

Refraction

Snell's law of refraction:

ηi sinθi = ηt sin θt

where ηi , ηt are
indices of refraction.

In all cases, R and T
are co-planar with d
and N.
The index of refraction is material dependent.

It can also vary with wavelength, an effect called
dispersion that explains the colorful light rainbows
from prisms. (We will generally assume no
dispersion.)

30

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What happens when ηi > ηt?

When θt is exactly 90°, we say that θi has achieved
the “critical angle” θc .

For θi > θc , no rays are transmitted, and only
reflection occurs, a phenomenon known as “total
internal reflection” or TIR.

31

Shirley uses different symbols. Here is the
translation between them:

Also, Shirley has two important errors that have
already been corrected in the handout.

But, if you’re consulting the original 2005 text, be
sure to refer to the errata posted on the syllabus
and on the project page for corrections.

Shirley’s notation

t

r i

i

t t

n
n

φ θ

θ θ θ

η

η

=

= =

=

=

r = R
t = T

32

Ray-tracing pseudocode, revisited
function traceRay(scene, P, d):

 (t, N, mtrl) ← scene.intersect (P, d)
 Q ß ray (P, d) evaluated at t
 I = shade(scene, mtrl, Q, N, -d)
 R = reflectDirection(N, -d)
 I ← I + mtrl.kr * traceRay(scene, Q, R)
 if ray is entering object then
 n_i = index_of_air
 n_t = mtrl.index
 else
 n_i = mtrl.index
 n_t = index_of_air
 if (notTIR

()) then
 T = refractDirection

()
 I ← I + mtrl.kt * traceRay(scene, Q, T)
 end if

 return I
end function

Q: How do we decide if a ray is entering the
object?

33

Terminating recursion, incl.
refraction
Q: Now how do you bottom out of recursive ray

tracing?

34

Shadow attenuation (cont’d)

Q: What if there are transparent objects along a
path to the light source?

We’ll take the view that the color is really only at
the surface, like a glass object with a colored
transparency coating on it. In this case, we multiply
in the transparency constant, kt, every time an
object is entered or exited, possibly more than once
for the same object.

35

Shadow attenuation (cont’d)

Another model would be to treat the glass as
solidly colored in the interior. Shirley’s textbook
describes a the resulting volumetric attenuation
based on Beer’s Law, which you can implement for
extra credit.

36

Photon mapping

Combine light ray tracing (photon tracing) and eye
ray tracing:

…to get photon mapping.

Renderings by Henrik Wann
Jensen:
http://graphics.ucsd.edu/~henrik/
images/caustics.html

37

Normals and shading when inside

When a ray is inside an object and intersects the
object’s surface on the way out, the normal will be
pointing away from the ray (i.e., the normal always
points to the outside by default).

You must negate the normal before doing any of
the shading, reflection, and refraction that follows.

Finally, when shading a point inside of an object,
apply kt to the ambient component, since that
“ambient light” had to pass through the object to
get there in the first place.

38

Intersecting rays with spheres

Now we’ve done everything except figure out what that
“scene.intersect(P, d)” function does.

Mostly, it calls each object to find out the t value at which
the ray intersects the object. Let’s start with intersecting
spheres…

Given:

w  The coordinates of a point along a ray passing
through P in the direction d are:

w  A unit sphere S centered at the origin defined by the
equation:

Find: The t at which the ray intersects S.

= +

= +

= +

x x

y y

z z

x P td
y P td

z P td

39

Intersecting rays with spheres

Solution by substitution:

where

Q: What are the solutions of the quadratic
equation in t and what do they mean?

Q: What is the normal to the sphere at a point
(x,y,z) on the sphere?

2 2 2

2 2 2

2

1 0

() () () 1 0

0
x x y y z z

x y z

P td P td P td

at bt c

+ + − =

+ + + + + − =

+ + =

= + +

= + +

= + + −

2 2 2

2 2 2

2()

1

x y z

x x y y z z

x y z

a d d d

b P d P d P d

c P P P

40

Ray-plane intersection

Next, we will considering intersecting a ray with a
plane.

To do this, we first need to define the plane
equation.

Given a point S on a plane with normal N, how
would we determine if a point X is on the plane?

This is the plane equation!

41

Ray-plane intersection (cont’d)

Now consider a ray intersecting a plane. The
plane has equation:

We can solve for the intersection parameter (and
thus the point):

42

Ray-triangle intersection

To intersect with a triangle, we first solve for the
equation of its supporting plane.

How might we compute the (un-normalized)
normal?

Given this normal, how would we compute k?

Using these coefficients, we can solve for Q. Now,
we need to decide if Q is inside or outside of the
triangle.

43

3D inside-outside test

One way to do this “inside-outside test,” is to
see if Q lies on the left side of each edge as
we move counterclockwise around the triangle.

How might we use cross products to do this?

44

2D inside-outside test

Without loss of generality, we can make this
determination after projecting down a
dimension:

If Q’ is inside of A’B’C’, then Q is inside of
ABC.

Why is this projection desirable?

Which axis should you “project away”?

45

Barycentric coordinates

As we’ll see in a moment, it is often useful to
represent Q as an affine combination of A, B,
and C:

where:

We call a, b, and g, the barycentric coordinates
of Q with respect to A, B, and C.

Q A B Cα β γ= + +

1α β γ+ + =

46

Computing barycentric
coordinates
Given a point Q that is inside of triangle ABC, we
can solve for Q’s barycentric coordinates in a
simple way:

How can cross products help here?

In the end, these calculations can be performed in
the 2D projection as well!

α β γ= = =
Area() Area() Area()				 				
Area() Area() Area()

QBC AQC ABQ
ABC ABC ABC

47

Interpolating vertex properties

The barycentric coordinates can also be used to
interpolate vertex properties such as:

w  material properties
w  texture coordinates
w  normals

For example:

Interpolating normals, known as Phong
interpolation, gives triangle meshes a smooth
shading appearance. (Note: don’t forget to
normalize interpolated normals.)

α β γ= + +() () () ()d d d dk Q k A k B k C

48

Epsilons

Due to finite precision arithmetic, we do not
always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

49

Intersecting with xformed geometry

In general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix M?

Apply M-1 to the ray first and intersect in object
(local) coordinates!

50

Intersecting with xformed geometry

The intersected normal is in object (local)
coordinates. How do we transform it to world
coordinates?

51

52

53

54

Summary

What to take home from this lecture:

w  The meanings of all the boldfaced terms.
w  Enough to implement basic recursive ray

tracing.
w  How reflection and transmission directions

are computed.
w  How ray-object intersection tests are

performed on spheres, planes, and triangles
w  How barycentric coordinates within triangles

are computed
w  How ray epsilons are used.

