
Ray Tracing


CSE 457 




Ray Tracing in the movie Cars!

All previous Pixar movies were renderd with scanline !
rendering – shadow maps, reflection maps!
But cars are very shiny and reflective   !



Ray Tracing in Cars !



1000 light sources, very fine 
shadow detail!



Typical scene at Pixar!
•  1000s lights!
•  1000s textures!
•  10000s objects !
•  100Ms objects !
•  Huge shaders!
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Reading 

Required: 

w  Shirley, section 10.1-10.7 (online handout) 
w  Triangle intersection (online handout) 
 

Further reading: 

w  Shirley errata on syllabus page, needed if 
you work from his book instead of the 
handout, which has already been 
corrected. 

w  T. Whitted. An improved illumination model 
for shaded display. Communications of the 
ACM 23(6), 343-349, 1980.  

w  A. Glassner.  An Introduction to Ray 
Tracing.  Academic Press, 1989.  

w  K. Turkowski, “Properties of Surface 
Normal Transformations,” Graphics Gems, 
1990, pp. 539-547.  
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Geometric optics 

Modern theories of light treat it as both a wave 
and a particle.   

We will take a combined and somewhat simpler 
view of light –  the view of geometric optics. 

Here are the rules of geometric optics: 

w  Light is a flow of photons with 
wavelengths.  We'll call these flows “light 
rays.” 

w  Light rays travel in straight lines in free 
space. 

w  Light rays do not interfere with each other 
as they cross. 

w  Light rays obey the laws of reflection and 
refraction. 

w  Light rays travel from the light sources to 
the eye, but the physics is invariant under 
path reversal (reciprocity). 



10

Eye vs. light ray tracing 

At the eye: eye ray tracing (a.k.a., backward 
ray tracing) 

We will generally follow rays from the eye into 
the scene. 

Where does light begin? 

At the light: light ray tracing (a.k.a., forward ray 
tracing or photon tracing) 
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Precursors to ray tracing 

Local illumination 

w  Cast one eye ray, then shade according 
to light 

 

 

 

 

Appel (1968) 

w  Cast one eye ray + one ray to light 
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Whitted ray-tracing algorithm 

In 1980, Turner Whitted introduced ray tracing to the 
graphics community. 

w  Combines eye ray tracing + rays to light 
w  Recursively traces rays 

 

 

 

 

 

 

Algorithm:  

1.  For each pixel, trace a primary ray in direction V to 
the first visible surface. 

2.  For each intersection, trace secondary rays: 

w  Shadow rays in directions Li to light sources 
w  Reflected ray in direction R. 
w  Refracted ray or transmitted ray in direction T. 
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Whitted algorithm (cont'd) 

Let's look at this in stages: 

 

L = light 
(shadow rays) 

V = primary rays 

R = reflected 

T = transmitted 
(or refracted) PP 
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Ray casting and local illumination 

Now let’s actually build the ray tracer in 
stages.  We’ll start with ray casting and local 
illumination: 
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Direct illumination 

 

 

 

 

 

A ray is defined by an origin P and a unit direction 
d and is parameterized by t > 0: 

r(t) = P + td 

Let  I(P, d) be the intensity seen along a ray.  
Then: 

I(P, d) = Idirect 

where 

w  Idirect  is computed from the Blinn-Phong 
model  
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Shading in “Trace” 

The Trace project uses a version of the Blinn-
Phong shading equation we derived in class, with 
two modifications: 

w  Distance attenuation is clamped to be at most 
1: 

w  Shadow attenuation Ashadow is included. 

 
Here’s what it should look like: 
 
 
 
 
 
This is the shading equation to use in the Trace 
project! 
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Ray-tracing pseudocode 

We build a ray traced image by casting rays 
through each of the pixels. 
 
function traceImage (scene): 

  for each pixel (i,j) in image 
   A = pixelToWorld(i,j) 
   P = COP 
   d = (A - P)/|| A – P|| 
   I(i,j) = traceRay(scene, P, d) 
  end for 

end function 
 
function traceRay(scene, P, d): 

  (t, N, mtrl)  ← scene.intersect (P, d) 
  Q ß ray (P, d) evaluated at t 
  I = shade(                                            ) 
  return I 

end function 
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Shading pseudocode 

Next, we need to calculate the color returned by 
the shade function. 
 
function shade(mtrl, scene, Q, N, d): 

  I ← mtrl.ke + mtrl. ka * ILa  
  for each light source Light do: 
   atten = Light -> 

distanceAttenuation(                 )  
   L = Light -> getDirection (             ) 
    I ← I + atten*(diffuse term + specular 

term) 
   end for  
  return I 

end function 
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Ray casting with shadows 

Now we’ll add shadows by casting shadow 
rays: 
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Shading with shadows 

To include shadows, we need to modify the 
shade function: 
 
function shade(mtrl, scene, Q, N, d): 

  I ← mtrl.ke + mtrl. ka * ILa  
  for each light source Light do: 
   atten = Light -> 

distanceAttenuation( Q ) * 
    Light -> 

shadowAttenuation(                     ) 
   L = Light -> getDirection (Q) 
   I ← I + atten*(diffuse term + specular 

term) 
  end for  
  return I 

end function 
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Shadow attenuation 

Computing a shadow can be as simple as 
checking to see if a ray makes it to the light 
source.   
For a point light source: 
 
function PointLight::shadowAttenuation(scene, 
P) 

  d = getDirection( P ) 
  (t, N, mtrl) ← scene.intersect(P, d) 
  Compute tlight 
  if (t < tlight) then: 
   atten = (0, 0, 0) 
  else 
   atten = (1, 1, 1) 
  end if 
  return atten 

end function 
 
Note: we will later handle color-filtered 
shadowing, so this function needs to return a 
color value. 
For a directional light, tlight = ∞. 
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Recursive ray tracing with reflection 

Now we’ll add reflection: 
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Shading with reflection 

 

 

 

 

 

Let  I(P, d) be the intensity seen along a ray.  
Then: 

I(P, d) = Idirect + Ireflected 

where 

w  Idirect  is computed from the Blinn-Phong 
model, plus shadow attenuation  

w  Ireflected = kr I (Q, R) 
  

Typically, we set kr = ks.    (kr is a color value.) 
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Reflection 

 

 

 

 

 

 

Law of reflection: 

θi  =  θr 

R is co-planar with d and N. 
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Ray-tracing pseudocode, revisited 

function traceRay(scene, P, d): 
  (t, N, mtrl)  ← scene.intersect (P, d) 
  Q ß ray (P, d) evaluated at t 
  I = shade(scene, mtrl, Q, N, -d) 
  R = reflectDirection(                    ) 
  I ← I + mtrl.kr * traceRay(scene, Q, R) 
  return I 

end function 
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Terminating recursion 

Q: How do you bottom out of recursive ray tracing? 

 

Possibilities: 
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Whitted ray tracing 

Finally, we’ll add refraction, giving us the Whitted 
ray tracing model: 

 



28

Shading with reflection and refraction 
 

 

 

 

 

Let  I(P, d) be the intensity seen along a ray.  
Then: 

 I(P, d) = Idirect + Ireflected + Itransmitted 

where 

w  Idirect  is computed from the Blinn-Phong 
model, plus shadow attenuation 

w  Ireflected = kr I (Q, R)  
w  Itransmitted = ktI (Q, T)  

Typically, we set kr = ks and kt = 1 – ks  (or (0,0,0), 
if opaque, where kt is a color value).   

[Generally, kr and kt are determined by “Fresnel 
reflection,” which depends on angle of incidence 
and changes the polarization of the light.  This is 
discussed in Shirley’s textbook and can be 
implemented for extra credit.] 
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Refraction 

Snell's law of refraction: 

ηi sinθi  = ηt sin θt 

where ηi , ηt are 
indices of refraction. 

In all cases, R and T 
are co-planar with d 
and N. 
The index of refraction is material dependent.   

It can also vary with wavelength, an effect called 
dispersion that explains the colorful light rainbows 
from prisms.  (We will generally assume no 
dispersion.) 



30

Total Internal Reflection 

The equation for the angle of refraction can be 
computed from Snell's law: 

 

 

What happens when ηi > ηt? 

When θt is exactly 90°, we say that θi  has achieved 
the “critical angle” θc . 

For θi > θc , no rays are transmitted, and only 
reflection occurs, a phenomenon known as “total 
internal reflection” or TIR. 
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Shirley uses different symbols.  Here is the 
translation between them: 

 

 

 

 

Also, Shirley has two important errors that have 
already been corrected in the handout.   

But, if you’re consulting the original 2005 text, be 
sure to refer to the errata posted on the syllabus 
and on the project page for corrections. 

Shirley’s notation 
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Ray-tracing pseudocode, revisited 
function traceRay(scene, P, d): 

  (t, N, mtrl)  ← scene.intersect (P, d) 
  Q ß ray (P, d) evaluated at t 
  I = shade(scene, mtrl, Q, N, -d) 
  R = reflectDirection(N, -d) 
  I ← I + mtrl.kr * traceRay(scene, Q, R) 
  if ray is entering object then 
   n_i = index_of_air 
   n_t = mtrl.index 
  else 
   n_i = mtrl.index 
   n_t = index_of_air 
  if (notTIR 

(                                                       )) then 
   T = refractDirection 

(                                        ) 
   I ← I + mtrl.kt * traceRay(scene, Q, T) 
  end if 

  return I 
end function 
 
Q: How do we decide if a ray is entering the 
object? 
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Terminating recursion, incl. 
refraction 
Q: Now how do you bottom out of recursive ray 

tracing? 
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Shadow attenuation (cont’d) 

Q: What if there are transparent objects along a 
path to the light source? 

 
 
 
 
 
 
 
 
 
 
 
 
We’ll take the view that the color is really only at 
the surface, like a glass object with a colored 
transparency coating on it.  In this case, we multiply 
in the transparency constant, kt, every time an 
object is entered or exited, possibly more than once 
for the same object.   



35

Shadow attenuation (cont’d) 

Another model would be to treat the glass as 
solidly colored in the interior.  Shirley’s textbook 
describes a the resulting volumetric attenuation 
based on Beer’s Law, which you can implement for 
extra credit. 
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Photon mapping 

Combine light ray tracing (photon tracing) and eye 
ray tracing: 
 
 
 
 
 
…to get photon mapping.  

Renderings by Henrik Wann 
Jensen: 
http://graphics.ucsd.edu/~henrik/ 
images/caustics.html 
 



37

Normals and shading when inside 

When a ray is inside an object and intersects the 
object’s surface on the way out, the normal will be 
pointing away from the ray (i.e., the normal always 
points to the outside by default). 

You must negate the normal before doing any of 
the shading, reflection, and refraction that follows. 

Finally, when shading a point inside of an object, 
apply kt to the ambient component, since that 
“ambient light” had to pass through the object to 
get there in the first place. 
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Intersecting rays with spheres 

Now we’ve done everything except figure out what that 
“scene.intersect(P, d)” function does.   

Mostly, it calls each object to find out the t value at which 
the ray intersects the object.  Let’s start with intersecting 
spheres… 

 

 

 

Given: 

w  The coordinates of a point along a ray passing 
through P in the direction d are: 

 
 
 
 
 

w  A unit sphere S centered at the origin defined by the 
equation: 

 

Find: The t at which the ray intersects S. 

= +

= +

= +

x x

y y

z z

x P td
y P td

z P td



39

Intersecting rays with spheres 

Solution by substitution: 

 

 

where 

 

 

Q: What are the solutions of the quadratic 
equation in t and what do they mean? 

 

 

 

Q: What is the normal to the sphere at a point 
(x,y,z) on the sphere? 
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Ray-plane intersection 

 

 

 

 

Next, we will considering intersecting a ray with a 
plane. 

To do this, we first need to define the plane 
equation. 

Given a point S on a plane with normal N, how 
would we determine if a point X is on the plane? 

 

 

 

 

This is the plane equation! 
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Ray-plane intersection (cont’d) 

 

 

 

 

Now consider a ray intersecting a plane.  The 
plane has equation: 

 

We can solve for the intersection parameter (and 
thus the point): 
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Ray-triangle intersection 

 

 

 

 

To intersect with a triangle, we first solve for the 
equation of its supporting plane. 

How might we compute the (un-normalized) 
normal? 

 

Given this normal, how would we compute k? 

 

Using these coefficients, we can solve for Q.  Now, 
we need to decide if Q is inside or outside of the 
triangle. 
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3D inside-outside test 

One way to do this “inside-outside test,” is to 
see if Q lies on the left side of each edge as 
we move counterclockwise around the triangle. 

 

 

 

 

 

How might we use cross products to do this? 
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2D inside-outside test 

Without loss of generality, we can make this 
determination after projecting down a 
dimension: 

 

 

 

 

 

 

 

If Q’ is inside of A’B’C’, then Q is inside of 
ABC. 

Why is this projection desirable?   

Which axis should you “project away”? 
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Barycentric coordinates 

As we’ll see in a moment, it is often useful to 
represent Q as an affine combination of A, B, 
and C: 

 

 

where: 

 

 

We call a, b, and g, the barycentric coordinates 
of Q with respect to A, B, and C. 

Q A B Cα β γ= + +

1α β γ+ + =
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Computing barycentric 
coordinates 
Given a point Q that is inside of triangle ABC, we 
can solve for Q’s barycentric coordinates in a 
simple way: 

 

 

 

 

 

 

How can cross products help here? 

 

 

In the end, these calculations can be performed in 
the 2D projection as well! 

α β γ= = =
Area( ) Area( ) Area( )				 				
Area( ) Area( ) Area( )

QBC AQC ABQ
ABC ABC ABC
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Interpolating vertex properties 

The barycentric coordinates can also be used to 
interpolate vertex properties such as: 

w  material properties 
w  texture coordinates 
w  normals 

For example: 

 

Interpolating normals, known as Phong 
interpolation, gives triangle meshes a smooth 
shading appearance.  (Note: don’t forget to 
normalize interpolated normals.) 

 

α β γ= + +( ) ( ) ( ) ( )d d d dk Q k A k B k C
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Epsilons 

Due to finite precision arithmetic, we do not 
always get the exact intersection at a surface. 

Q: What kinds of problems might this cause? 

 

 

 

 

 

Q: How might we resolve this? 
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Intersecting with xformed geometry 

In general, objects will be placed using 
transformations.   What if the object being 
intersected were transformed by a matrix M? 

Apply M-1 to the ray first and intersect in object 
(local) coordinates! 
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Intersecting with xformed geometry 

The intersected normal is in object (local) 
coordinates.  How do we transform it to world 
coordinates?  



51



52



53



54

Summary 

What to take home from this lecture: 

w  The meanings of all the boldfaced terms. 
w  Enough to implement basic recursive ray 

tracing. 
w  How reflection and transmission directions 

are computed. 
w  How ray-object intersection tests are 

performed on spheres, planes, and triangles 
w  How barycentric coordinates within triangles 

are computed 
w  How ray epsilons are used. 


