Shading

CSE 457

Reading

Required:
* Angel chapter 5.

Optional:
+ OpenGL red book, chapter 5.

Basic 3D graphics

With affine matrices, we can now transform virtual
3D objects in their local coordinate systems into a
global (world) coordinate system:

"n Y2

X xro

uu

To synthesize an image of the scene, we also
need to add light sources and a viewer/camera:

e
Zw

Q

yu

Pinhole camera i @

To create an image of a virtual scene, we need to

define a camera, and we need to model lighting

and shading. For the camera, we use a pinhole /
A

P Lv'g ﬁm‘n‘

camera. ("‘ o
oot R4
mile 9P

The image is rendered onto an image plane
(usually in front of the camera).

Viewing rays emanate from the center of
projection (COP) at the center of the pinhole.

The image of an object point P is at the intersectio
of the viewing ray through P and the image plane.

But is P visible? This the problem of hidden
surface removal (a.k.a., visible surface
determination). We'll consider this problem later.

Shading

Next, we'll need a model to describe how light
interacts with surfaces.

Such a model is called a shading model.

Other names:

2

Lighting model

Light reflection model
Local illumination model
Reflectance model
BRDF

2

L 4

L 4

L 2

An abundance of photons

Given the camera and shading model, properly determining the right color at each pixel is
extremely hard. Look around the room. Each light source has different characteristics. Trillions
of photons are pouring out every second.

These photons can:

¢ interact with molecules and
particles in the air
(“participating media”)
+ strike a surface and
* be absorbed
* be reflected (scattered)

« cause fluorescence or
phosphorescence.
¢ interact in a wavelength-
dependent manner

+ generally bounce around
and around

Approximation of reality: 'l
Phong and Blinn-Phong illumination / Wr}b"@
models.
4J—,o.[|\l\)ﬂ‘ NQM
They have the following characteristics: ""’\ u”{\'o"“ ’
| beturee
. n.ot physically correct 0[)\ ¢ ckS
ﬁévrisr:ﬂ eﬂgﬁ;{) r(:rder approximation to physical : rr‘r-efrcc(‘ c‘w'ﬂ
+ very fast {\"“d"“/
+ widely used -
loca moded
2y
We will assume a local illumination \ L N ?\ 4

light->surface->viewer

T .
\%rreﬂectlons, no shadow

Given:

L 4

a point P on a surface visible through pixel p
The normal N at P

The lighting direction, L, and (color) intensity,
l,,atP

+ The viewing direction, V, at P
+ The shading coefficients at P

Assume that the direction vectors are normalized:

L] N C
INI =L =gv)=1 v

—

L 4

*

T —

Our lighting model includes the
following components

Surface color =
Emissive +
Ambient +
Diffuse +

Specular

Next we will talk about each of these in more
detail...

Emissive

The simplest thing you can do is...
Assign each polygon a single color:

=k,
where

¢ [is the resulting intensity

* kg is the emissivity or intrinsic shade
associated with the object

This has some special-purpose uses, like to

represent glowing objects. But not really good for
drawing a scene. For example: light bulb can have
its own color.

[Note: kg is omitted in Angel.]

10

Ambient

Let’'s make the color at least dependent on the
(ko

overall quantity of light available in the Sv
gt ﬁ&@f

J=k, \,XM\\Q

IYC\ ﬁml.. nt \'\},\“k

* k,is the amblent reflection coefficient.
« really the reflectance of ambient light

» “ambient” light is assumed to be equal in
all directions

+ [, is the ambient light intensity.

Physically, what is “ambient” light?

O\\o\oroy'.makou O(‘ w‘\‘a.[['-(:(té\,\su§

[Note: Angel uses L, instead of /,.]

RTINS

11

Wavelength dependence @M W EUT)

Really, k., k,, and /,, are functions over all
wavelengths A.

Ideally, we would do the calculation on thege
functions. For the ambient shading equati
would start with:

[(A) =K, (A (A
b(’ Gr'lm..&\/\%%

G ot

then we would find good RGB values to
represent the spectrum /(\).

Traditionally, though, k, and /, , are represented
as RGB triples, and the computation is perfoerd
on each color channel separately:

IR = kR IR
1°=k; I —
[2=KB B g o K 2

12

Let’'s examine the ambient shading model:

+ objects have different colors
+ we can control the overall light intensity
« what happens when we turn off the lights?
» what happens as the light intensity increases?

« what happens if we change the color of the
lights?

So far, objects are uniformly lit.

+ not the way things really appear

+ in reality, light sources are localized in position or
direction

Diffuse, or Lambertian reflection will allow reflected
intensity to vary with the direction of the light.

13

Our lighting model includes the
following components

Surface color =

+
+

Diffuse(L) +

Specular(L,V)

14

Our lighting model includes the
following components

Surface color =

+
+
For each light L.
Diffuse(L) +
Specular(L,V)

15

Intro to specular and diffuse reflection

16

17

18

The law of reflection

Incident ray Reflected ray

Specular reflection:

Smooth surface causes reflected rays
to travel in the same direction

19

Specular reflection

20

The surface is so smooth in a calm
lake that all the reflected rays bounce
off in the same direction

21

Ripples because of wind causes
rough surface => reflected rays travel
in different directions

22

Most everyday objects have diffuse
reflection because of tiny roughness
of the surface

23

24

25

Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces,
like latex paint, or chalk.

These diffuse or Lambertian reflectors reradiate
light equally in all directions.

Picture a rough surface with lots of tiny
microfacets.

Wb

27

Diffuse reflectors

...or picture a surface with little pigment particles
embedded beneath the surface (neglect reflection
at the surface for the moment):

NN
ST

The microfacets and pigments distribute light rays
in all directions.

Embedded pigments are responsible for the
coloration of diffusely reflected light in plastics and
paints.

Note: the figures above are intuitive, but not strictly
(physically) correct.

28

Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does
not depend on the direction of the viewer. The
incoming light, though, does depend on the
direction of the light source:

ol R
[OQ\/\ \I
N) f
O=-—>
dA ¢h
9%

d“'\ < }A' COSQ ‘ c.lc
M‘tﬂw‘nig’c db (“‘L) Bq ‘o
ahg

% | NLYO9

[3=

o NL€0

Diffuse reflection

The incoming energy is proportional & © :
giving the diffuse reflection equations:

=ke +kaILa +kdILB(”’(—)

where:

4

k, is the diffuse reflection coefficient
I, is the (color) intensity of the light source
N is the normal to the surface (unit vector)

L is the direction to the light source (unit
vector)

+ B prevent below the

L 4

*

*

ifN-L>0
ifN-L<O

[Note: Angel uses L, instead of /, and finstead of
B.]

30

specular
diffuse

ambient

Our lighting model includes the @

LN
following components Wﬁ

Surface color = low of (ekle gy
Emissive +
Ambient + AW
yo S

For each light
Diffuse(L: N o

v’((\ w2 Specular{l,V) Nt

qu)cQ PP o °’j

32

Specular reflection

Specular reflection accounts for the highlight that
you see on some objects.

It is particularly important for smooth, shiny
surfaces, such as:

+ metal

+ polished stone
+ plastics

+ apples

¢ skin

Properties:

+ Specular reflection depends on the viewing
direction V.

+ For non-metals, the color is determined solely
by the color of the light.

+ For metals, the color may be altered (e.qg.,
brass)

33

Specular reflection “derivation”
L N
N 2‘. &
L R\\ z” \ 7] (/
06 o AV

For a perfect mirror reflector, light is reflected about
N, so 4(\'0.&
{/L if V=R

)0 otherwise
A+ \' R

For a near-perfect reflector, you might expect the
highlight to fall off quickly with increasing angle ¢.

Also known as:

+ “rough specular” reflection
+ “directional diffuse” reflection
+ “glossy” reflection

34

Phong specular reflection

cos’’s ¢

One way to get this effect is to take (R-V), raised

to a power n.. ~‘UZ .,) ()

As ng gets larger,
+ the dropoff becomes {mo@s} gradual
+ gives a {larger.smallgr} highlight
+ simulates Jless} mirror-like surface

n,

Phong specular reflection is proportional to:

/ B(R-V)™

specular

where (x), = max(0, x).

35

Blinn-Phong specular reflection

A common alternative for specular reflection is the
Blinn-Phong model (sometimes called the
modified Phong model.)

We compute the vector halfway between L and V
as:

H= ::\ Lw)

T N A

Analogous to Phong specular reflection, we can
compute the specular contribution in terms of

(N-H), raised to a power n;
specular = (N H)ZS

where, again, (x), = max(0, x).

Blinn-Phong

The next update to the Blinn-Phong shading
model is then:

I=k, +k,l +k, BN-L)+k. IB(N-H)"
= K, + Kl + 1Bk (N-L)+ K (N-H)™ |

where:

* k. is the specular reflection coefficient
* n,is the specular exponent or shininess

¢ H is the unit halfway vector between L and
V, where V is the viewing direction.

[Note: Angel uses a instead of n,, and maintains a
separate L, and L, instead of a single /,. This
choice reflects the flexibility available in OpenGL.]

37

Directional lights

The simplest form of lights supported by renderers
are ambient, directional, and point. Spotlights are
also supported often as a special form of point
light.

We've seen ambient light sources, which are not
really geometric.

Directional light sources have a single direction
and intensit\ acenriatad with tham

ON

W\

Using affine notation, what is the hzmogeneous
coordinate for a directional light?

38

Point lights

The direction of a point light sources is
determined by the vector from the light position to
the surface poi' g

-
- ~

(4

Physics tells us the intensity must drop off inversely
with the square of the distance:

atten r?

Sometimes, this distance-squared dropoff is
considered too “harsh.” A common alternative is:

atten g+ pr +cr?

with user-supplied constants for a, b, and c.

Using affine notation, what is the homogeneous
coordinate for a puint light?

39

Spotlights

We can also apply a directional attenuation of a
point light source, giving a spotlight effect.

A common choice for the spotlight intensity is:

LS L,
_ as<
fspot =Ja+br+cr?
0 otherwise

where

+ L is the direction to the point light.
+ S is the center direction of the spotlight.
¢ « is the angle between L and S

+ f3 is the cutoff angle for the spotlight

+ ¢ is the angular falloff coefficient

Note:a<f < cos '(L-S)<f < L-S=cosp.

40

Additive lights

Since light is additive, we can handle multiple lights
by taking the sum over every light.

Our equation is now:

/ ") .!\
l=ke+kalLa+

This is the Blinn-Phong illumination model (for
spotlights).

Which quantities are spatial vectors? v

Which are RGB triples? #

Which are scalars? *

41

Shading in OpenGL

The OpenGL lighting model allows you to
associate different lighting colors according to
material properties they will influence.

Thus, our original shading equation (for point

“lights):
I= ke + kaILa +

1 ng
.

becomes:

I=ke+kalLa+ ‘/
]

S— 1+C [Kuliay * B, {alia (NL K (NH))7}
7 a; by +or’ \A~ 1. 0,.(,
bt RER gy

where you can have a global ambient light with
intensity /, , in addition to having an ambient light
intensity /,, ; associated with each individual light,
as well as separate diffuse and specular

intensities, ILd,j and ILSJ, repectively. 47

Materials in OpenGL

The OpenGL code to specify the surface shading
properties is fairly straightforward. For example:

GLfloat ke[] = { 0.1,
GLfloat kal[] = { 0.1,
GLfloat kd[] = { 0.3,
GLfloat ks[] = { 0.2,
GLfloat ns[] = { 50.0

glMaterialfv (GL FRONT,
glMaterialfv (GL FRONT,
GL_FRONT,
glMaterialfv (GL FRONT,

(
(
glMaterialfv (
(
glMaterialfv (GL FRONT,

Notes:

0
0
0.
0
} i

.15,
.15,

.2,

0.05,

0.1,
0.2,
0.2,

1.0 };
1.0 };
1.0 };
1.0 };

3,

GL EMISSION, ke);

GL AMBIENT,
GL DIFFUSE,

ka) ;
kd) ;

GL SPECULAR, ks);

GL SHININESS,

ns);

¢+ The GL FRONT parameter tells OpenGL that
we are specifiying the materials for the front of

the surface.

+ Only the alpha value of the diffuse color is
used for blending. It's usually set to 1.

43

Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the
0th) is specified something like:

GLfloat Lal]
GLfloat LaOl[
GLfloat LdO[
GLfloat LsO]
GLfloat posO0
]
]
]

[a—

GLfloat al[
GLfloat bO[
GLfloat cOf
GLfloat SO[] =

—_~— s

Il
s e
R R O
o O = o~

GLfloat betaO[] = { 45 };

GLfloat e0[] = { 2 };

glLightModelfv (GL LIGHT MODEL AMBIENT, La);

glLightfv (GL LIGHTO,
glLightfv (GL LIGHTO,
glLightfv (GL LIGHTO,
glLightfv (GL LIGHTO,
glLightfv (GL LIGHTO,
glLightfv (GL LIGHTO,
glLightfv (GL LIGHTO,
glLightfv (GL LIGHTO,

GL AMBIENT, La0);

GL DIFFUSE, LdO);

GL SPECULAR, LsO);

GL POSITION, posO0);

GL CONSTANT ATTENUATION, a0);
GL LINEAR ATTENUATION, DbO);

GL QUADRATIC ATTENUATION, cO);
GL_SPOT DIRECTION, SO0);

glLightf (GL_LIGHTO, GL_SPOT CUTOFF, beta0) ;
glLightf (GL LIGHTO, GL_SPOT EXPONENT, e0);

44

Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_ LIGHTS lights
in a scene. This number is system-dependent.

/
For directional lights, you specify a light direction,
not position, and the attenuation and spotlight
terms are ignored.

The directions of directional lights and spotlights
are specified in the coordinate systems of the
lights, not the surface points as we’ve been doing in
lecture.

45

3D Geometry in the
Graphics Hardware Pipeline
Graphics hardware applies transformations to bring

the objects and lighting into the camera’s
coordinatey§ystem:

Y2
[Model or object space
T T9
21 Z2
scale, translate,
rotate, ...
~
QD
y?l)
‘ World space
Ty
Zw rotate, translate
e
Y
Ye
- Eye or camera space
S
Yo Te

Ze

The geometry is assumed to be made of triangles,
and the vertices are projected onto the image
plane.

46

Rasterization

After projecting the vertices, graphics hardware
“smears” vertex properties across the interior of the
triangle in a process called rasterization.

(1’1, Y1, Zl)
Yi A (RlaGhBl)

($27 Y2, Z?)—
(R27 GQ) BQ)

(z3,y3, 23)
(Rs3, G, Bs)

-
>

i

Smearing the z-values and using a Z-buffer will
enable the graphics hardware to determine if a
point inside a triangle is visible. (More on this in
another lecture.)

If we have stored colors at the vertices, then we
can smear these as well.

47

| o)

11

Let’'s consider each channel separately:

IV

49

Shading the interiors of triangles

We will be computing colors using the Blinn-Phong
lighting model.

Let’'s assume (as graphics hardware does) that we
are working with triangles.

How should we shade the interiors of triangles?

51

Shading with per-face normals

Assume each face has a constant normal:

For a distant viewer and a distant light source and
constant material properties over the surface, how
will the color of each triangle vary?

ConSl'aV‘

& LML GomA WM dﬂ)

52

Faceted shading (cont’d)

[Williams and Siegel 1990]

/
L

SS=

/

53

Gouraud interpolation

To get a smoother result that is easily performed in
hardware, we can do Gouraud interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.

N

Nh
L/‘ N.

Shade

'
Iu
Ib Q

'

Interpolate (rasterize)

Iy

Ib Q
I

I

54

Facted shading vs. Gouraud
interpolation

[Williams and Siegel 1990]

55

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse,
we can miss specular highlights.

o L
N

2.We will encounter Mach banding (derivativ
discontinuity enhanced by human eye).

This is what graphics hardware does by default

A substantial improvement is to do...

56

—

%lncq

PANE

— .
W{ﬂ la{)‘h;w
U —

M ach 'M.,-)«‘k q9 &"rl‘f“l‘h‘""

"\ \
—

e Shasetn

4o Awcodt.
o0/ eyes

&l;u Lqua (,'l R

filer “srvpenins)

Phong interpolation

To get an even smoother result with fewer artifacts,
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.

3. Shade using the interpolated normals.
Nn
Nh

Shade

58

Gouraud vs. Phong interpolation

==l

[Williams and Siegel 1990]

59

Default pipeline: Gouraud interpolation

Default vertex processing:

L < determine lighting direction
Vertex V < determine viewing direction

processor N <—normalize(n,)

Chlinn-phong <~ shade with L,V,N,k , ,k,n;

attach Cpjinn-phong t0 vertex as

“varying”

— v; < project v to image
Primitive .
assembler Vi,v;,V; — triangie
Yik
(V} ’ cglinn-phong)
! 1 Fragment
/ 4 /(Vf, cglinn—phong)
Rasterizer ;
(Vi’ Cglinn-phon) P ‘
1
@ 1 (vi ’ célinn-phong)
| 3
(V;-, Cglinn—phong)
2

Fragment Default fragment processing:
processor €olor <= Cyinn-phong

60

Programmable pipeline:
Phong-interpolated normals!

V. Vertex shader:
ertex attach n, to vertex as “varying”
processor attach v, to vertex as “varying”

vj < project v to image

A 4

Primitive VivZ VP s triangle
assembler
g V1, V1, nd, KL KL)
\ Fragment
v pd (v2, v2, nb, k&, kZ, n?)
/ _—
. o) o) 217.2 1.2 2 =
Rasterizer | (7. vi ni|ki k2, n?) P !
WA
-~
(V. v3 2, K B)
z:
Fragment shader:
L < determine lighting direction
Fr‘agment V <—determine viewing direction
processor N <—normalize(n?)
color <= shade with L,V,N,k7 k¥ ,n?

Choosing Blinn-Phong shading

parameters

Experiment with different parameter settings. To

get you started, here are a few suggestions:

* Try ngin the range [0,100]
. Tryka+kd+ks<1
¢ Use a small k, (~0.1)

ns kd ks

Small, Large,

Metal large color of color of
metal metal
Medium, .

Plastic medium color of Me_dlum,

. white

plastic

Planet 0 varying 0

62

BRDF

The diffuse+specular parts of the Blinn-Phong
illumination model are a mapping from light to
viewing directions:

Lev)©
=18 ¥)

IL+V

kd(N-L)+ksN-(

=/ f.(L,V)
The mapping function f, is often written in terms of
incoming (light) directions w,, and outgoing
(viewing) directions w,;:

flo,,w,,) or flw,—=aw,,)

This function is called the Bi-directional
Reflectance Distribution Function (BRDF).

Here's a plot with w;, held constant:

BRDF’s can be quite sophisticated...

63

More sophisticated BRDF’s

[Cook and Torrance,
1982]

Artistics BRDFs [Gooch]

64

Summary

You should understand the equation for the Blinn-
Phong lighting model

+ What is the physical meaning of each
variable?

+ How are the terms computed?

+ \What effect does each term contribute to the
image?

+ What does varying the parameters do?

You should also understand the differences

between faceted, Gouraud, and Phong interpolated
shading.

And you should understand how to compute the
normal to a surface of revolution.

65

