Affine Transformations

CSE 457

Reading

Required:

Angel 3.1, 3.7-3.11

Further reading:

- Angel, the rest of Chapter 3
- ◆ Foley, et al, Chapter 5.1-5.5.
- ◆ David F. Rogers and J. Alan Adams, *Mathematical Elements for Computer Graphics*, 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: (x', y', z') = f(x, y, z).

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

Vector representation

We can represent a **point**, $\mathbf{p} = (x,y)$, in the plane or $\mathbf{p} = (x,y,z)$ in 3D space

• as column vectors

Canonical axes

Vector length and dot products

Vector cross products

Representation, cont.

We can represent a **2-D transformation** *M* by a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If **p** is a column vector, *M* goes on the left:

$$\mathbf{p'} = M\mathbf{p}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

If **p** is a row vector, M^T goes on the right:

$$\mathbf{p'} = \mathbf{p} M^{T}$$

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

We will use column vectors.

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix *M*:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

So:

$$x' = ax + by$$

$$y' = cx + dy$$

We will develop some intimacy with the elements *a*, *b*, *c*, *d*...

Identity

Suppose we choose a=d=1, b=c=0:

• Gives the **identity** matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let a and d take on any positive value:

• Gives a **scaling** matrix:

$$\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

Provides differential (non-uniform) scaling in x and y:

$$x' = ax$$

$$y' = dy$$

Suppose we keep b=c=0, but let either a or d go negative.

Examples:

Now let's leave a=d=1 and experiment with b. . . .

The matrix

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

gives:

$$x' = x + by$$
$$y' = y$$

Effect on unit square

Let's see how a general 2 x 2 transformation *M* affects the unit square:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} [\mathbf{p} \quad \mathbf{q} \quad \mathbf{r} \quad \mathbf{s}] = [\mathbf{p'} \quad \mathbf{q'} \quad \mathbf{r'} \quad \mathbf{s'}]$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

Effect on unit square, cont.

Observe:

- Origin invariant under M
- ◆ M can be determined just by knowing how the corners (1,0) and (0,1) are mapped
- a and d give x- and y-scaling
- ◆ b and c give x- and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Thus,

$$M = R(\theta) =$$

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Adding the third "w" component puts us in homogenous coordinates.

And then transform with a 3 x 3 matrix:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Anatomy of an affine matrix

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations

always look like this:
$$t_x$$

$$M = \begin{bmatrix} c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & t \\ 0 & 0 & 1 \end{bmatrix}$$

2D affine transformations always have a bottom row of [0 0 1].

An "affine point" is a "linear point" with an added w-coordinate which is always 1:

$$\mathbf{p}_{\text{aff}} = \begin{bmatrix} \mathbf{p}_{\text{lin}} \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Applying an affine transformation gives another affine point: $M\mathbf{p}_{\text{aff}} = \begin{bmatrix} A\mathbf{p}_{\text{lin}} + \mathbf{t} \\ 1 \end{bmatrix}$

$$M\mathbf{p}_{aff} = \begin{bmatrix} A\mathbf{p}_{lin} + \mathbf{t} \\ 1 \end{bmatrix}$$

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, q, about any point $\mathbf{q} = [q_X \ q_Y]^T$ with a matrix:

- 1. Translate **q** to origin
- 2. Rotate
- 3. Translate back

Note: Transformation order is important!!

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Translation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation in 3D (cont'd)

These are the rotations about the canonical axes:

$$R_{\chi}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{\chi}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{\chi}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
Use right hand rule

A general rotation can be specified in terms of a product of these three matrices. How else might you specify a rotation?

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation **M**.

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

• glTranslatef(
$$t_x$$
, t_y , t_z) $M \leftarrow MT$
- translate by (t_x, t_y, t_z)

• glRotatef(
$$\theta$$
, x, y, z) $\mathbf{M} \leftarrow \mathbf{MR}$
- rotate by angle θ about axis (x, y, z)

Note that OpenGL adds transformations by *postmultiplication* of the modelview matrix.

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.