NURBS & Parametric
Surfaces
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Rational polynomial curves

Remarkably, parametric polynomial curves cannot
represent something as simple as a circle!

BUT, ratios of polynomials can. We can write these in
terms of homogeneous coordinates, which we then
normalize:
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The equations above describe a rational Bézier curve.

It can be represented in terms of control points, but
now we add the homogenous dimension. So fora 2D
curve, we have control points with three components
(lofted up into 3D), where the homogenous component
can be something other than 1.



Rational polynomial curves (cont’d)
What do we get for the following curve?
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Q: How does lllustrator represent a circle?



NURBS

In general, we can spline together rational Bézier
curves, to get things like rational B-splines.

Another thing we can do is vary the range of u so that
itis not always [0..1] in each Bézier segment of a spline.
E.g, it could be [0..1] in one segment and then [0..2] in
the next.

The u-range affects placement of control points. The
result is a non-uniform spline.

A very common type of spline is a Non-Uniform
Rational B-Spline or NURBS.

(The “B” in B-spline technically stands for “Basis.”)



Mathematical surface representations

* Explicit z=f(xy) (a.k.a., a"height field"”)
- what if the curve isn’t a function, like a sphere?
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¢ Implicit g(x,y,2) =0

Isocontour from “marching squares” Isocontour from “marching cubes”

¢ Parametric S(u,v)=(x(u,v),y(u,v),z(u,v)) z
« For the sphere: %
x(u,v) =r cos 2mv sin Tu L y
y(u,v) =rsin 2ntv sin Tu a

X
z(u,v) =r cos nu
As with curves, we'll focus on parametric surfaces.



Surfaces of revolution
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Given: A curve C(u) in the xy-plane:
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Let R(0) be a rotation about the y-axis.

Find: A surface S(u,v) which is C(u) rotated about
the y-axis, where u, v € [0, 1].

Solution:



General sweep surfaces

The surface of revolution is a special case of a swept
surface.

|dea: Trace out surface S(u,v) by moving a profile
curve C(u) along a trajectory curve T(v).

yC A y‘\

More specifically:

¢ Suppose that C(u) liesin an (x,y,) coordinate
system with origin O..

* For every point along T(v), lay C(u) so that O,
coincides with T(v).



Orientation

The big issue:

+ How to orient C(u) as it moves along T(v)?

Here are two options:

1. Fixed (or static): Just translate O, along T(v).

S(u,v)

2. Moving. Use the Frenet frame of T(v).

¢ Allows smoothly varying orientation.
+ Permits surfaces of revolution, for example.



Frenet frames

Motivation: Given a curve T(v), we want to attach a
smoothly varying coordinate system.

To get a 3D coordinate system, we need 3
independent direction vectors.

Tangent: t(v)=normalize[T'(v)]
Binormal: b(v)=normalize[T'(v)xT"(v)]
Normal: n(v)=b(v)xt(v)

As we move along T(v), the Frenet frame (t,b,n) varies
smoothly.



Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of
the trajectory T(v):
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Put C(u) in the normal plane.
Place O_on T(v).

Align x_ for C(u) with b.

Align y_for C(u) with -n.
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Normal plane
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If T(v) is a circle, you get a surface of revolution exactly!
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Degenerate frames

Let’s look back at where we computed the coordinate
frames from curve derivatives:
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Where might these frames be ambiguous or
undetermined?
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Variations

Several variations are possible:

¢ Scale C(u) as it moves, possibly using length of
T(v) as a scale factor.

+ Morph C(u) into some other curve C(u) as it
moves along T(v).
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Tensor product Bézier surfaces

Given a grid of control points V;, forming a control net,
construct a surface S(u,v) by:

¢ treating rows of V (the matrix consisting of the V,j)
as control points for curves V,(u),..., V,(u).

¢ treating V,(u),..., V,(u) as control points for a
curve parameterized by v.
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Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Control polygon at u=1/2 Curve at S(1/2,v)

Which control points are interpolated by the surface?
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Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the
Bernstein polynomials:

n
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i=0
A tensor product Bézier surface can be written as:

Suv)=Y Vb Wb, (v)

i=0 j=0

In the previous slide, we constructed curves along u, and then
along v. This corresponds to re-grouping the terms like so:

Suv)=Y, (Z\/ijbi (U)j b; (v)
j=0 \|i=0
But, we could have constructed them along v, then u:

n

i=0

vib, (v)j b (U)
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Tensor product B-spline surfaces

As with spline curves, we can piece together a
sequence of Bézier surfaces to make a spline surface. If
we enforce C? continuity and local control, we get B-
spline curves:

* treat rows of B as control points to generate
Bézier control points in u.

¢ treat Bézier control points in u as B-spline control
pointsin v.

¢ treat B-spline control points in v to generate
Bézier control points in u.
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Tensor product B-spline surfaces, cont.

Which B-spline control points are interpolated by the
surface?
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Tensor product B-splines, cont.

Another example:
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NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS
surfaces.
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Trimmed NURBS surfaces

Sometimes, we want to have control over which parts
of a NURBS surface get drawn.

For example:
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We can do this by trimming the u-v domain.

* Define a closed curve in the u-v domain (a trim
curve)

¢ Do not draw the surface points inside of this
curve.

It’s really hard to maintain continuity in these regions,
especially while animating.
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Adding creases without trim curves

For NURBS surfaces, adding sharp features like creases
required the use of trim curves.

For subdivision surfaces, we can just modify the
subdivision masks. E.g., we can mark some edges and
vertices as “creases” and modify the subdivision mask
for them (and their children):

This gives rise to G° continuous surfaces (i.e., having

[Hoppe, SIGGRAPH 1994]

positional but not tangent plane continuity).
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Summary

What to take home:

* How to construct swept surfaces from a profile
and trajectory curve:

- with a fixed frame
« with a Frenet frame
+ How to construct tensor product Bézier surfaces

¢ How to construct tensor product B-spline
surfaces
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