Surfaces of revolution

Surfaces of Revolution

Brian Curless
 CSE 457

Spring 2014

Idea: rotate a 2D profile curve around an axis.
What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A curve $C(u)$ in the $x y$-plane:

$$
C(u)=\left[\begin{array}{c}
c_{x}(u) \\
c_{y}(u) \\
0 \\
1
\end{array}\right]
$$

Let $R_{y}(\theta)$ be a rotation about the y-axis.
Find: A surface $S(u, v)$ which is $C(u)$ rotated about the y-axis, where $u, v \in[0,1]$.

Solution:

Constructing surfaces of revolution

We can sample in u and v to get a grid of points over the surface.

Suppose we sample

- in u, to give $C[m]$ where $m \in[0 . . M-1]$
- in v, to give rotation angle $\theta[\mathrm{n}]=2 \pi n / N$ where $n \in[0 . . N-1]$
We can now write the surface as:

Surface normals

Now that we describe the surface as a triangle mesh,
we need to provide surface normals. As we'll see later, these normals are important for drawing and shading the surface (i.e., for "rendering").

One approach is to compute the normal to each triangle. How do we compute these normals?

Later, we will see that we can get better-looking results by computing the normal at each vertex. How might we do this?

Normals on a surface of revolution

Triangle meshes

How should we generally represent triangle meshes?

