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Reading

Required:
¢ Angel 3.1,3.7-3.11
Further reading:
+ Angel, the rest of Chapter 3

+ Foley, et al, Chapter 5.1-5.5.

+ David F.Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed.,
McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x, y’, z’) =f(x, y, 2).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x,y), in the plane or p=(x,y,2) in
3D space
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Representation, cont.
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We will use column vectors.

A _ /l We can represent a 2-D transformation M by a matrix
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Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:
x' a bix
y'| e dly

x'=ax+ by

So:

y'=cx+dy

We will develop some intimacy with the elements a, b,
cd...

Identity

Suppose we choose a=d=1, b=c=0:

+ Gives the identity matrix:

e

¢ Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let aand d take on any
positive value:

+ Gives a scaling matrix:
¥ .[a 0 "‘X
AN o dll Y
¢ Provides differential (non-uniform) scaling in x

and y: x'=ax
y'=dy i
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Now let's leave a=d=1 and experiment with b. ...

The matrix

gives:

x'=x+by .g

yi=y

o m 1

Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:
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Rotation

Effect on unit square, cont.

Observe:

¢ Origin invariant under M

¢ M can be determined just by knowing how the
corners (1,0) and (0,1) are mapped

¢ aand dgive x- and y-scaling

¢ band cgive x- and y-shearing

From our observations of the effect on the unit square,
it should be easy to write down a matrix for “rotation
about the origin”:
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

¢ Scaling

+ Rotation
+ Reflection
¢ Shearing

Q: What important operation does that leave out?
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

y

%Y
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Adding the third“w”’ component puts us in

homogenous coordinates.

And then transform with a 3 x 3 matrix:

x xX] [1 0 t]x X F
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17 .. gives translation! 18
Anatomy of an affine matrix w v v Rotation about arbitrary points
¢ A ¥y v
The addition of translation to linear o 0 ! Until now, we have only considered rotation about the _ promileR
origin. | ( \ -
’ ,H\* (3
In matrix form, 2D affine transformations always vy With homogeneous coordinates, you can specify a rotation, R(: \

transformations gives us affine transformations.
T b\1 +ty
look like this: (

= | aK Loy + —bJ;
2D affine transformations always have a bottom T Al 1
row of [0 0 1]. \

An “affine point”is a“linear point” with an added

w-coordinate which is always 1: ‘A )41 - Xy
X = f “b‘{
p'ln
paff:|: |1 }: y { 0
1

Applying an affine transformation gives another c | ¥
affine point: (7 by
Ap, +t
Mp ¢ { “? }
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q, about any point q = [qgy qy]T with a matrix:

g = I

a @~ —=
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1. Translate q to origin Tu}\ RL&\T(FQS ?;
~— |

2. Rotate

3. Translate back M T (OK\K (@\K— i}

Note: Transformation order is important!!
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Points and vectors

Vectors have an additional coordinate of w=0. Thus, a
change of origin has no effect on vectors.

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D

\ g-A ones.
Ay Q: What happens if we muItipIy a vector by an affine
By matrix? o b x AVrt b VY For example, scaling:
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Translationin 3D Rotation in 3D (cont'd)
% = if These are the rotations about the canonical axes:
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' z o o 0]
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A general rotation can be specified in terms of a
product of these three matrices. How else might
you specify a rotatlon7
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Shearingin 3D

Shearing is also more complicated. Hereis one
example: v

X' ’ blfo]| o x
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We call this a shear with respect to the x-z plane.

Properties of affine transformations 5

Here are some useful properties of affine
transformations:

¢ Lines map to lines ok
+ Parallel lines remain parallel \k o%
+ Midpoints map to midpoints (in fact, ratios are

always preserved)

ratio= M Zoa ||p‘q‘||
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Affine transformationsin OpenGL Summary
What to take away from this lecture:
OpenGL maintains a “modelview” matrix that holds .
the current transformation M. ¢ All the names in boldface.
. . . . + How points and transformations are represented.
The modelview matrix is applied to points (usually
vertices of polygons) before drawing. + How to compute lengths, dot products, and cross
products of vectors, and what their geometrical
It is modified by commands including: meanings are.
+ glLoadIdentity () Ml + What all the elements of a 2 x 2 transformation
~ set M to identity matrix do and how these generalize to 3 x 3
transformations.
¢ glTranslatef (t,, t, t,) M« MT + What homogeneous coordinates are and how
- translate by (t,, t, t,) they work for affine transformations.
+ How to concatenate transformations.
¢ glRotatef (6, x, y, 2z) M < MR ¢ The mathematical properties of affine
- rotate by angle 6 about axis (x, y, 2) transformations.
¢ glScalef(sy, sy, s;) M« MS
- scale by (s,, s, 5,)
Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.
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