Affine transformations

Brian Curless
CSE 457
Spring 2014

Reading

Required:
¢ Angel 3.1,3.7-3.11
Further reading:
+ Angel, the rest of Chapter 3

+ Foley, et al, Chapter 5.1-5.5.

+ David F.Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed.,
McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x, y’, z’) =f(x, y, 2).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x,y), in the plane or p=(x,y,2) in
3D space

X
+ as column vectors {

* asrow vectors

Canonical axes

vz \:\/)Q v \/il

2
Vector length and dot products VN = HVH
& VARV,
IV _ ')___ 2 \/7- ~——’
|/~;c/ LOZ: Ux u\/\\— Ny \/\(+Vy = Z/su\v
) M L eV B UV s T
b
‘ VRV Rt
4
v oyes
WV = | ux W%X Vv”f = wv o T
Vi
> w v = [ullivll wse
V20 D ulv ol silil 0
b
wLe
Q.‘: M \ O\\k = [é— porms! ?/L&_M
H,V\LL MVH" (30
AN - CcosD 0
; woY ool =

Vector cross products n
“ e
Y W X — i -
J V ﬁ G (v~ u,)
e
N VXu)-V =0 = [vyre Vet
2
x*\)wm W= b vy Ux T Vel
G S I O R v
ook Y Ve iy T Yy Uy
Vi e -uxv
((scewil
H\I{ﬁ wll = [\HH\/\ [Isin&l AV w =Ry
- Aru\(g\ﬂv\ = WxVv =0
T AW V)T \/m\(
L

N(A,,Njfv W Xw

Representation, cont.

T T 7T
5 (ABY =B A

pl = pMT

e oy 5] = Ly el

We will use column vectors.

A _ /l We can represent a 2-D transformation M by a matrix
= ;
< [a b} ?1;%9\
d '
(p &3‘(’*&\ K i p =t (?\y\:gﬂf
(malk‘g S prisacolumnvector,MgoesM
f \,P\
oS, L L) e
- - ! Vel —
O \P‘ X' _Ja bl x _ ol T lex +0A\
\4\’/% y'| |c d]y /)
S
% . (\\!UA;\QI If p is a row vector, MTgoes on the right:
g
PADT freasd
od

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:
x' a bix
y'| e dly

x'=ax+ by

So:

y'=cx+dy

We will develop some intimacy with the elements a, b,
cd...

Identity

Suppose we choose a=d=1, b=c=0:

+ Gives the identity matrix:

e

¢ Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let aand d take on any
positive value:

+ Gives a scaling matrix:
¥ .[a 0 "‘X
AN o dll Y
¢ Provides differential (non-uniform) scaling in x

and y: x'=ax
y'=dy i

10
(\Q He ction
L ¢l
Suppose we keep b=c=0, but let either aor d go N Na
negative.
M u\
Examples: it~ N — #
\ " /
d
A
/A AN
10 10 R —N N—B
0 1 0 -1 \p‘ p

A A

S I s
V]

< -
> X Rol-;:}'rw‘)
J by 18

T—;?Wo‘i\-— \o)

CL\{MI\ Cay\k{f

SE(\CAK

Now let's leave a=d=1 and experiment with b. ...

The matrix

gives:

x'=x+by .g

yi=y

o m 1

Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:

{i Z}[P ar sl

t1 17

a blo 1
c d||o o
Yot

=S,
I
| T |
S0 O
>0 Q
a9
+ 4+
Q o
Q o

1
/ 148 r A - |
1 X“(Y’DX ak
| P q N A
A \/ |) o
7 S\;v P
L A
13 14
Rotation

Effect on unit square, cont.

Observe:

¢ Origin invariant under M

¢ M can be determined just by knowing how the
corners (1,0) and (0,1) are mapped

¢ aand dgive x- and y-scaling

¢ band cgive x- and y-shearing

From our observations of the effect on the unit square,
it should be easy to write down a matrix for “rotation
about the origin”:

1 CoS®
o Lo
0 —5M@X
9
[1} E cost
Thus,
CoS% -sup

g\ (68

N

ko -
5 L+ rb”; ‘;’fLm\Q
x

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

¢ Scaling

+ Rotation
+ Reflection
¢ Shearing

Q: What important operation does that leave out?

ﬁrm\)\‘ﬁ“

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

y

%Y

% 1

Adding the third“w”’ component puts us in

homogenous coordinates.

And then transform with a 3 x 3 matrix:

x xX] [1 0 t]x X F
y =Ty |={o 1 ¢, |ly|T | Yty
w' 1] 0o &

17 .. gives translation! 18
Anatomy of an affine matrix w v v Rotation about arbitrary points
¢ A ¥y v
The addition of translation to linear o 0 ! Until now, we have only considered rotation about the _ promileR
origin. | (\ -
’ ,H* (3
In matrix form, 2D affine transformations always vy With homogeneous coordinates, you can specify a rotation, R(: \

transformations gives us affine transformations.
T b\1 +ty
look like this: (

= | aK Loy + —bJ;
2D affine transformations always have a bottom T Al 1
row of [0 0 1]. \

An “affine point”is a“linear point” with an added

w-coordinate which is always 1: ‘A)41 - Xy
X = f “b‘{
p'ln
paff:|: |1 }: y { 0
1

Applying an affine transformation gives another c | ¥
affine point: (7 by
Ap, +t
Mp ¢ { “? }

19

q, about any point q = [qgy qy]T with a matrix:

g = I

a @~ —=

mo Ty o Re)

1. Translate q to origin Tu}\ RL&\T(FQS ?;
~— |

2. Rotate

3. Translate back M T (OK\K (@\K— i}

Note: Transformation order is important!!

20

Points and vectors

Vectors have an additional coordinate of w=0. Thus, a
change of origin has no effect on vectors.

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D

\ g-A ones.
Ay Q: What happens if we muItipIy a vector by an affine
By matrix? o b x AVrt b VY For example, scaling:
% - | Ay A X a\/)({-AV\{ =
‘1 . < \/ x' sx, 0 0 Ofx
Ak These representatlons reflect some of the rules of affine Ty 4 ol 0 Sy 0 Ojy
= %:'M operations on points and vectors: Pi‘b@ Y Qm"\l; \ 7' 0 0 s, oll z
o
D vector + vector —» vehe 1 0 0 0 11
scalar - vector — V€FOT fe \,b ﬁf\("b@f
point-point — Ve P‘/ m*‘b
point + vector — fbf"{' ‘\)
point + point — Chao$
. , . tu q—fPLJC\
One useful combination of affine operations is: I
X
p(t)=p, +tu //_\vl
Q: What does this describe? Pg z
-6@(;"";"% S e
te [0,‘”\) 7> Il -l me
ol WN 21 22
Translationin 3D Rotation in 3D (cont'd)
% = if These are the rotations about the canonical axes:
X! 100 X {T
' z o o 0]
y 010 y o)
1= Ry (c)= 0 cosa —siha O
z 0 0 1 z o sing cosa 0
1 0 0 0 11 0 0 0o 1]
[cosp 0 sinpg O]
R(B)= 0 1 0 0
y(B)= —sin 0 cosf 0
L o o o 1]
[cosy —siny 0 0O
el) Use right hand rule
R, ()= siny cosy 0O O
‘ 0 o 10
|0 0o 01
A general rotation can be specified in terms of a
product of these three matrices. How else might
you specify a rotatlon7
Romditn soot o Auredion 8L
\
@V\pﬁ@f?\fw\ﬁ - &(‘v\v\/fﬂlm)(To
24

23

Shearingin 3D

Shearing is also more complicated. Hereis one
example: v

X' ’ blfo]| o x
y' 1//0] 0]y
PR ANAVAY P
1 0 0 0 11

We call this a shear with respect to the x-z plane.

Properties of affine transformations 5

Here are some useful properties of affine
transformations:

¢ Lines map to lines ok
+ Parallel lines remain parallel \k o%
+ Midpoints map to midpoints (in fact, ratios are

always preserved)

ratio= M Zoa ||p‘q‘||

larl ¢ Jar]

25 26
Affine transformationsin OpenGL Summary
What to take away from this lecture:
OpenGL maintains a “modelview” matrix that holds .
the current transformation M. ¢ All the names in boldface.
. . . . + How points and transformations are represented.
The modelview matrix is applied to points (usually
vertices of polygons) before drawing. + How to compute lengths, dot products, and cross
products of vectors, and what their geometrical
It is modified by commands including: meanings are.
+ glLoadIdentity () Ml + What all the elements of a 2 x 2 transformation
~ set M to identity matrix do and how these generalize to 3 x 3
transformations.
¢ glTranslatef (t,, t, t,) M« MT + What homogeneous coordinates are and how
- translate by (t,, t, t,) they work for affine transformations.
+ How to concatenate transformations.
¢ glRotatef (6, x, y, 2z) M < MR ¢ The mathematical properties of affine
- rotate by angle 6 about axis (x, y, 2) transformations.
¢ glScalef(sy, sy, s;) M« MS
- scale by (s,, s, 5,)
Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.
27 28

