
Ray Tracer
Spring 2013 Help Session

Due: Thursday, May 16th, 11:59pm

TA: Chris Gelon

Outline

• Introduction

• ray

• vec.h and mat.h

• isect

• Requirements

• Tips and Tricks

• Memory Leaks

• Artifact Requirement

• Ray Tracing Surface of Revolution

• Using ply Models

• Bells and Whistles

Ray Tracer

• Given a ray “caster”, you have to implement:
• Shading (multiple parts)

• Reflection and Refraction

• Sphere Intersection

• Triangle Intersection
• Complex objects consist of a 3D mesh made up of triangles

ray

• A 3D ray is a fundamental component of a ray tracer.

• ray r(start position, direction, RayType)
• RayType, an enum, includes:

• VISIBILITY
• REFLECTION
• REFRACTION
• SHADOW

• Example:
• ray r(foo, bar, ray::SHADOW);

• r.at(t) – direction of r * distance t
• Returns the end position of the ray r after going a distance of

t from its start position

vec.h and mat.h

• vec.h provides useful tools for 2D, 3D, and 4D
vectors
• Easy Vector Construction – Vec3d x = Vec3d(0,0,0);
• Basic operators are overridden:

• + and – arthimetic, Vec3d v3 = v1 + v2;
• *, multiply by a constant, Vec3d v2 = 2*v1;
• *, dot product, double dot = v1 * v2;
• ^, cross product, Vec3d cross = v1 ^ v2;

• For other useful functionality, such as normalize(),
length(), and iszero(), read vec.h for complete details

• mat.h is very similar, but for matrix operations not
heavily used in this project

isect

• An isect represents the location where a ray intersects
an object

• Important member variables:
• const SceneObject *obj – the object that was intersected
• double t – the distance along the ray where it occurred
• Vec3d N – the normal to the surface where it occurred
• Vec2d uvCoordinates – texture coordinates on the surface

[1.0, 1.0]
• Material *material – non-NULL if exists a unique material for

this intersect
• const Material &getMaterial() const – return the material to

use

Requirements

• The following requirements need to be
implemented:
• Sphere intersection

• Triangle intersection

• Blinn-Phong Specular-Reflection Model

• Multiple light sources

• Shadow attenuation

• Reflection

• Refraction

Requirement: Sphere Intersection

• Fill in Sphere::intersectLocal in
SceneObjects\Sphere.cpp

• Return true if ray r intersects the canonical sphere
(sphere centered at the origin with radius 1.0) in
positive time

• Set the values of isect i:
• i.obj = this

• i.setT (time of intersection)

• i.setN (normal at intersection)

Requirement: Triangle Intersection

• Fill in TrimeshFace::intersectLocal in
SceneObjects\trimesh.cpp

• Intersect r with the triangle abc:
• Vec3D &a = parent->vertices[ids [0]];
• Vec3D &b = parent->vertices[ids [1]];
• Vec3D &c = parent->vertices[ids [2]];

• Return true if ray r intersects the triangle

• Need more help? See triangle intersection handout
linked to on project website:
• http://www.cs.washington.edu/education/courses/cse4

57/handouts/triangle_intersection.pdf

Requirement: Blinn-Phong Specular-
Reflection Model

• Fill in Material::shade in material.cpp

• Refer to the Ray Tracing lecture:
• http://www.cs.washington.edu/education/courses/cse4

57/13sp/lectures/markup/ray-tracing-markup-1pp.pdf

• To sum over the light sources, use an iterator as
described in the comments of the code

• CAUTION: If you are on the inside of an object, the
object’s normal will point outside. For this case,
you will need to flip the normal for any shading,
reflection, or refraction.

http://www.cs.washington.edu/education/courses/cse457/13sp/lectures/markup/ray-tracing-markup-1pp.pdf

Requirement: Multiple Light Sources

• Fill in PointLight::distanceAttenuation in light.cpp
(distance attenuation for directional light is done
for you)

• Use the alternative described in the ray tracing
lecture where:
• a – constant term

• b – linear term

• c – quadratic term

• These terms are defined in light.h

Requirement: Shadow Attenuation

• Fill in DirectionalLight::shadowAttenuation and
PointLight::shadowAttenuation in light.cpp

• The ray tracing lecture shows you where to insert this factor
into the Blinn-Phong equation (a_shadow for each light)

• Rather than simply setting the attenuation to zero if an
object blocks the light, accumulate the product of k_t’s for
objects which block the light (use the prod function from
vec.h)

• Count each intersection with an object by the shadow ray
(includes entering and exiting)

• See Foley, et. al. Section 16.12 – this particular method is
not really covered in the lecture slides

• Extra Credit: Better shadow handling (caustics, global
illumination, etc.)

Requirement: Reflection

• Modify RayTracer::traceRay in RayTracer.cpp to
implement recursive ray tracing, which takes into
account reflected rays

• See Foley, et. al. and lecture slides

Requirement: Refraction

• Modify RayTracer::traceRay in RayTracer.cpp to create
refracted rays

• Remember Snell’s law, watch out for total internal
refraction, and consider the case when the ray is exiting
a material into air (think about the direction of the
normal)

• You can test refraction with
simple/cube_transparent.ray

• Unlike reflection, this routine has several cases to
consider:
• An incoming ray
• An outgoing ray
• Totally internally refracted ray

nglass=1.5

1

2

2

1

nair=1.0003

Tips and Tricks

• Use the sign of the dot product r.getDirection()
with i.N to determine whether you are entering or
exiting an object

• Don’t write too much code without testing!
• Lots of dependencies, you need to know what works to

proceed

• Use RAY_EPSILON (which is defined as 0.00001) to
account for computer precision error when
checking for intersections RAY_EPSILON

The Debugger Tool

• USE THIS, IT WILL SAVE YOUR LIFE!

• Shipped with skeleton code

• Find out how to use it here:
• http://www.cs.washington.edu/education/courses/cse4

57/13sp/projects/trace/extra/debug.html

http://www.cs.washington.edu/education/courses/cse457/13sp/projects/trace/extra/debug.html

Memory Leaks

• A memory leak can (and probably will) ruin your
night hours before your artifact is due

• To test, try to ray trace a complex model (the
dragon) with depth 10, anti-aliasing, HUGE Image

• Cause: not calling free after allocating memory
• Object constructors, vector (array) creation

• Solution: free stuff!
• Call the “delete [object]” on ANYTHING you create that is temporary

• i.e. 3 byte temporary vectors in the rayTrace function

• It is HIGHLY RECOMMENDED you have no memory
leaks

Artifact Requirement

• Draw a pretty picture!

• One JPEG/PNG image traced with your Ray Tracer
submitted for voting

• Has to be a (somewhat) original scene

• For each image submitted for voting, a short .txt
description of the scene or special features

• Examples of each bell/whistle implemented with an
accompanying readme.txt specifying which image
demonstrates which feature (and where/how)

Ray Tracing Surface of Revolution

• Use this code snippet to write triangle mesh into a
file:
• http://www.cs.washington.edu/education/courses/cse4

57/13sp/projects/trace/code/write_revolution_rayfile.c

• Use this .ray file as a template
• http://www.cs.washington.edu/education/courses/cse4

57/13sp/projects/trace/code/revolution.ray
• It contains default lighting of modeler
• Replace polymesh{} part with your own surface of

revolution

• Render your new .ray file in tracer!

http://www.cs.washington.edu/education/courses/cse457/13sp/projects/trace/code/write_revolution_rayfile.c
http://www.cs.washington.edu/education/courses/csep557/13wi/projects/trace/code/revolution.ray

Sample Results

texture mapping

Using ply Models

• ply is one of the standard
formats for 3D models:
• http://en.wikipedia.org/wiki

/PLY_(file_format)

• There are a plethora of ply
models available online

• We provide a simple tool
(ply2ray) that converts ply
models into .ray files
• It is in your source folder, so

check it out!

• You still need to add
lightning and material
property

http://en.wikipedia.org/wiki/PLY_(file_format)

Bells and Whistles

• TONS of awesome extra credit!

• Anti-aliasing – A must for nice scenes (to render scenes without
“jaggies”)

• Interpolate trimesh material properties – will make them look
nicer

• Envrionment/Texture/Bump Mapping – Relatively easy ways to
create complex and compelling scenes

• Single Image Random Dot Stereograms

• Depth of field, soft shadows, motion blur, glossy reflection – most
images we’re used to seeing have at least one of these effects

• NOTE: Please add control boxes for substantial ray tracing
modifications so that required extension are easily gradable
• See sample solution style

3D and 4D Fractals

http://www.cs.washington.edu/education/courses/cse457/04sp/projects/trace/vote/omicron-tortman/omicron-tortman2.txt

Constructive Solid Geometry

• Allows for complex objects while still just
intersecting simple primitives

