Surfaces of revolution

Surfaces of Revolution

Brian Curless

CSE 457
Spring 2013

Idea: rotate a 2 D profile curve around an axis.
What kinds of shapes can you model this way?

Constructing surfaces of revolution

Constructing surfaces of revolution

Given: A set of points $C[n]$ on a curve in the $x y$-plane:

$$
C[n]=\left[\begin{array}{c}
C_{x}[\mathrm{n}] \\
C_{y}[\mathrm{n}] \\
0 \\
1
\end{array}\right] \quad \text { where } \mathrm{n} \in[0, N]
$$

Let $R_{y}\left(\theta_{m}\right)$ be a rotation about the y-axis by angle θ_{m}.
Find: A set of points $S[m, n]$ on the surface formed by rotating $C[n]$ rotated about the y-axis. Assume $m \in[0, M]$.

Solution:

Constructing surfaces of revolution

We now have an array of points, $\mathrm{S}[n, m]$ on the surface.

How would we turn this into a mesh of triangles?
How many triangles are generated?

