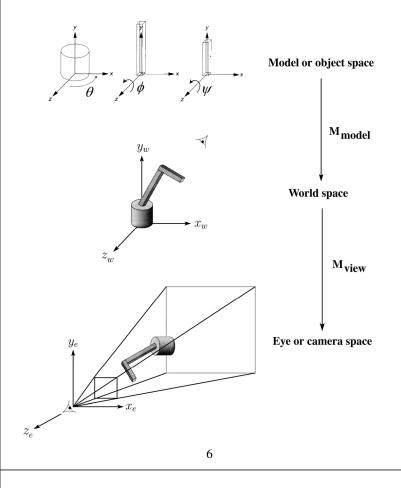

	Reading
	Required:
	 Angel, sections 8.1 – 8.6, 8.8
	Optional:
	 OpenGL Programming Guide, chapter 3
Hierarchical Modeling	
Brian Curless CSE 457 Spring 2013	
1	2
Symbols and instances	3D Example: A robot arm
Most graphics APIs support a few geometric	Consider this robot arm with 3 degrees of freedom:
primitivesspheres	 Base rotates about its vertical axis by θ Upper arm rotates in its <i>xy</i>-plane by φ
 cubes cylinders 	• Lower arm rotates in its $-$ plane by ψ
These symbols are instanced instance transformation $R = \frac{T}{T}$	Lower arm Upper arm Base h_1 z θ z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z ψ z z z ψ z z z ψ z z z z z z z z
	(Note that the angles are set to zero in the figure; i.e., the parts are shown in their "default" positions.)
Q: What is the matrix for the instance transformation above?	Q: What matrix do we use to transform the base?
	Q: What matrix for the upper arm?
	Q: What matrix for the lower arm?
3	4

3D Example: A robot arm

An alternative interpretation is that we are taking the original coordinate frames...

...and translating and rotating them into place:


Robot arm implementation

The robot arm can be displayed by keeping a global matrix and computing it at each step:

```
Matrix M_model;
Matrix M_view;
```

```
main()
{
    . . .
    M_view = compute_view_transform();
    robot_arm();
     . .
}
robot_arm()
{
    M_model = M_view*R_y(theta);
    base();
    M_model = M_View*R_y(theta)*T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model = M_view*R_y(theta)*T(0,h1,0)
                  *R_z(phi)*T(0,h2,0)*R_z(psi);
    lower_arm();
}
```

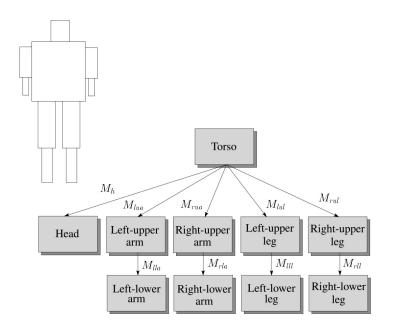
From parts to model to viewer

Robot arm implementation, better

Instead of recalculating the global matrix each time, we can just update it *in place* the right:

Matrix M_modelview;

```
main()
{
    . . .
    M_modelview = compute_view_transform();
    robot_arm();
    . . .
}
robot_arm()
ſ
    M_model *= R_y(theta);
    base();
    M_model *= T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model *= T(0,h2,0)*R_z(psi);
    lower_arm();
}
```


8

7

Do the matrix computations seem wasteful?

Robot arm implementation, OpenGL Hierarchical modeling OpenGL maintains a global state matrix called the Hierarchical models can be composed of instances model-view matrix using trees or DAGs: concatenating matrices on the *right* main() { Chassis Chassis . . . L-F R-R glMatrixMode(GL_MODELVIEW); R-F L-R Matrix M = compute_view_xform(); Wheel Right-front Right-rear Left-front Left-rear glLoadMatrixf(M); wheel wheel wheel wheel robot_arm(); . . . } edges contain geometric transformations nodes contain geometry (and possibly drawing robot_arm() attributes) { glRotatef(theta, 0.0, 1.0, 0.0); base(); glTranslatef(0.0, h1, 0.0); How might we draw the tree for glRotatef(phi, 0.0, 0.0, 1.0); the robot arm? lower_arm(); glTranslatef(0.0, h2, 0.0); glRotatef(psi, 0.0, 0.0, 1.0); upper_arm(); } 9 10

A complex example: human figure

What's the most sensible way to traverse this tree?

Human figure implementation, OpenGL

```
figure()
    torso();
    glPushMatrix();
        glTranslate( ... );
        glRotate( ... );
        head();
    glPopMatrix();
    glPushMatrix();
        glTranslate( ... );
        glRotate( ... );
        left_upper_arm();
        glPushMatrix();
            glTranslate( ... );
            glRotate( ... );
            left_lower_arm();
        glPopMatrix();
     glPopMatrix();
     . . .
```

{

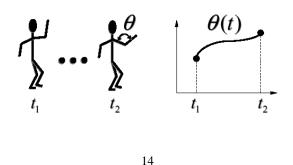
}

Animation

The above examples are called articulated models

- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

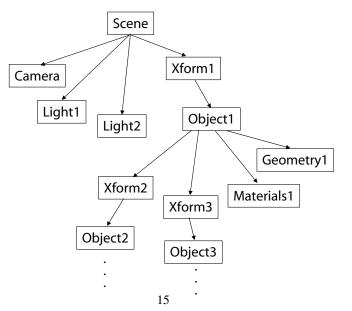

Key-frame animation

The most common method for character animation in production is **key-frame animation**

- Each joint specified at various (not necessarily the same as other joints)
- System does interpolation or **betweening**

Doing this well requires:

- A way of smoothly interpolating key frames: **splines**
- A good interactive system
- A lot of skill on the part of the animator


13

Scene graphs

The idea of hierarchical modeling can be extended to an entire scene, encompassing:

- many different objects
- lights
- camera position

This is called a scene tree or scene graph

Summary

Here's what you should take home from this lecture:

- All the **boldfaced terms**.
- How primitives can be instanced and composed to create hierarchical models using geometric transforms.
- How the notion of a model tree or DAG can be extended to entire scenes.
- How OpenGL transformations can be used in hierarchical modeling.
- How keyframe animation works.