

Reading

Required:

- Witkin, Particle System Dynamics, SIGGRAPH '01 course notes on Physically Based Modeling
- Witkin and Baraff, Differential Equation Basics, SIGGRAPH '01 course notes on hysically Based Modeling.

Optional

- Hockney and Eastwood. Computer simulation using particles. Adam Hilger, New York, 1988.
- Gavin Miller. "The motion dynamics of snakes and worms." Computer Graphics 22:169-178, 1988.

What are particle systems?

particle system is a collection of point masses hat obeys some physical laws (e.g, gravity, heat convection, spring behaviors, ...).
Particle systems can be used to simulate all sorts of physical phenomena:

Particle in a flow field

We begin with a single particle with:

- Position, $\mathbf{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$
- Velocity, $\mathbf{v} \equiv \dot{\mathbf{x}}=\frac{d \mathbf{x}}{d t}=\left[\begin{array}{l}d x / d t \\ d y / d t\end{array}\right]$

Suppose the velocity is actually dictated by a driving function, a vector flow field, \mathbf{g}

$$
\dot{\mathbf{x}}=\mathbf{g}(\mathbf{x}, t)
$$

Diff eqs and integral
 curves
 The equation
 $$
\dot{\mathbf{x}}=\mathbf{g}(\mathbf{x}, t)
$$

is actually a first order differential equation.
We can solve for \mathbf{x} through time by starting at an initial point and stepping along the vector field:

This is called an initial value problem and the olution is called an integral curve.

Euler's method

ne simple approach is to choose a time step, Δt, and take linear steps along the flow.

$$
\mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta \mathbf{x}=\mathbf{x}(t)+\Delta t \cdot \frac{\Delta \mathbf{x}}{\Delta t}
$$

$\approx \mathbf{x}(t)+\Delta t \cdot \dot{\mathbf{x}}(t)$
$\approx \mathbf{x}(t)+\Delta t \cdot \mathbf{g}(\mathbf{x}(t), t)$
Writing as a time iteration:

$$
\mathbf{x}^{i+1}=\mathbf{x}^{i}+\Delta t \cdot \mathbf{g}^{\prime} \quad \text { with } \quad \mathbf{g}^{\prime} \equiv \mathbf{g}\left(\mathbf{x}^{i}, t=i \Delta t\right)
$$

This approach is called Euler's method and looks like:

Properties:

- Simplest numerical method
- Bigger steps, bigger errors. Error ~ O($\left.\Delta t^{2}\right)$.

Need to take pretty small steps, so not very efficient. Better (more complicated) methods exist, e.g., adaptive Better (more complicated) methods exist, e.g., acal
timesteps, Runge-Kutta, and implicit integration.

Particle in a force field

Now consider a particle in a force field \mathbf{f}.
In this case, the particle has:

- Mass, m
- Acceleration, $\mathbf{a}=\ddot{\mathbf{x}}=\dot{\mathbf{v}}=\frac{d \mathbf{v}}{d t}=\frac{d^{2} \mathbf{x}}{d t^{2}}$

The particle obeys Newton's law:
$\mathbf{f}=m \mathbf{a}=m \ddot{\mathbf{x}}$
So, given a force, we can solve for the acceleration:
$\ddot{\mathbf{x}}=\frac{\mathrm{f}}{\mathrm{m}}$
The force field \mathbf{f} can in general depend on the position and velocity of the particle as well as
time.
Thus, with some rearraf(se,x,eq)t, we end up with: m

Second order equations

This equation:

$$
\ddot{\mathbf{x}}=\frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}
$$

is a second order differential equation.
ur solution method, though, worked on first order differential equations.

We can rewrite the second order equation as:

$$
\left[\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{v} \\
\dot{\mathbf{v}}=\frac{\mathbf{f}(\mathbf{x}, \mathbf{v}, t)}{m}
\end{array}\right] \text { or }\left[\begin{array}{l}
\dot{\mathbf{x}} \\
\dot{\mathbf{v}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{v} \\
\frac{\mathbf{f}(\mathbf{x}, \mathbf{v}, t)}{m}
\end{array}\right]
$$

ere we substitute in \mathbf{v} and its derivative to get a pair of coupled first order equations.

```
Phase space
\([\mathbf{x}]\) Concatenate \(\mathbf{x}\) and \(\mathbf{v}\) to make a Concatenate \(x\) and \(v\) to make a
6 -vector: position in phase space
\(\left[\begin{array}{c}\dot{\mathbf{x}} \\ \dot{\mathbf{v}}\end{array}\right] \quad\) Taking the time derivative: another
iv 6 -vector
```

$\left[\begin{array}{c}\dot{\mathbf{x}} \\ \dot{\mathbf{v}}\end{array}\right]=\left[\begin{array}{c}\mathbf{v} \\ \mathbf{f} / \mathrm{m}\end{array}\right] \begin{aligned} & \text { A vanilla } 1^{\text {st- }} \text {-order differential } \\ & \text { equation. }\end{aligned}$ $\dot{\mathbf{v}}][\mathbf{f} / m]$ equation.

Differential equation solver

Starting with:

$$
\left[\begin{array}{l}
\dot{\mathbf{x}} \\
\dot{\mathbf{v}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v} \\
\mathbf{f} / m
\end{array}\right]
$$

Applying Euler's method
$\mathbf{x}(t+\Delta t) \approx \mathbf{x}(t)+\Delta t \cdot \dot{\mathbf{x}}(t)$
$\dot{\mathrm{x}}(t+\Delta t) \approx \dot{\mathrm{x}}(t)+\Delta t \cdot \ddot{\mathrm{x}}(t)$
And making substitutions:
$\mathbf{x}(t+\Delta t) \approx \mathbf{x}(t)+\Delta t \cdot \mathbf{v}(t)$ $\mathbf{v}(t+\Delta t) \approx \mathbf{v}(t)+\Delta t \cdot \frac{\mathbf{f}(\mathbf{x}(t), \mathbf{v}(t), t)}{m}$
Writing this as an iteration, we have
$\mathbf{x}^{1+1}=\mathbf{x}^{\prime}+\Delta t \cdot \mathbf{v}^{\prime}$
$\mathbf{v}^{i+1}=\mathbf{v}^{i}+\Delta t \cdot \frac{\mathbf{f}^{\prime}}{m} \quad$ with $\quad \mathbf{f}^{\prime} \equiv \mathbf{f}\left(\mathbf{x}^{i}, \mathbf{v}^{i}, t\right)$
Again, performs poorly for large Δt.

Single particle solver interface

Particle systems

In general, we have a particle system consisting in general, we have a particle system co
of n particles to be managed over time:
particles n time

particles	n
time	

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the Euler method:

Particle systems with forces

Force objects are black boxes that point to the particles they influence and add in their
contributions
We can now visualize the particle system with force objects:

| particles n time forces $n f$ |
| :--- | :--- | :--- |

$\left[\begin{array}{c}\mathbf{x}_{1} \\ \mathbf{v}_{1} \\ \mathbf{f}_{1} \\ m_{1}\end{array}\right]\left[\begin{array}{c}\mathbf{x}_{2} \\ \mathbf{v}_{2} \\ \mathbf{f}_{2} \\ m_{2}\end{array}\right] \ldots\left[\begin{array}{c}\mathbf{x}_{n} \\ \mathbf{v}_{n} \\ \mathbf{f}_{n} \\ m_{n}\end{array}\right]$

Gravity and viscous drag

The force due to gravity is simply:
$\mathbf{f}_{\text {grav }}=m \mathbf{G}$
$\mathbf{p - > f}+=\mathbf{p}->\mathbf{m} * \mathbf{F}->\mathbf{G}$

Often, we want to slow things down with viscous drag.

$$
\begin{gathered}
\mathbf{f}_{\text {drag }}=-k_{\text {drag }} \mathbf{v} \\
\mathbf{p - > f \quad - =} \mathbf{F - > k} \mathbf{k}^{*} \mathbf{p - > v}
\end{gathered}
$$

> Damped spring
> A spring is a simple examples of an " N -ary" force
> Recall the equation for the force due to a 1 D
> spring: $f=-k_{\text {spoing }}(x-r) \quad \square \underset{\sim 0000000}{\stackrel{r}{\text { rest }} \text { length }}$
> With damping:
> $f=-\left[k_{\text {sping }}(x-r)+k_{\text {damp }} \vee\right]$
> In 2D or 3D, we get:

derivEval

1. Clear forces

Loop over particles, zero force accumulators
2. Calculate forces

- Sum all forces into accumulators

3. Return derivatives

- Loop over particles, return \mathbf{v} and f / m

Bouncing off the walls

Handling collisions is a useful add-on for a

Collision Detection

How do you decide when you've made exact contact with the plane?
For now, we'll just consider simple point-plane collisions.

A plane is fully specified by any point \mathbf{P} on the plane and its normal \mathbf{N}.

Normal and tangential velocity

To compute the collision response, we need to consider the normal and tangential components of a particle's velocity

Collision without contac

In general, we don't sample moments in time when particles are in exact contact with the surface.

There are a variety of ways to deal with this problem.
he most expensive is backtracking: determine a collision must have occurred, and then roll back the simulation to the moment of contact.

A simple alternative is to determine if a collision must have occurred in the past, and then pretend hat you're currently in exact contact

Detecting Collisions Occurring Within a Time Step

How do you decide when you've had a collision during a timestep?

Compute change in sign of signed distance
Before time step: $(x-P) \bullet N>0$ After time step: $(x+v \Delta t-P) \bullet N<0$

Collision Response

- detect the future time and point of collision
- reflect the particle within the time-step

Particle frame of reference

et's say we had our robot arm example and we wanted to launch particles from its tip.

How would we go about starting the particles from the right place?
First, we have to look at the coordinate systems in the OpenGL pipeline

Projection and modelview matrices
geometry will get transformed by a sequence of matrices before drawing

$$
\mathbf{p}^{\prime}=\mathbf{M}_{\text {project }} \mathbf{M}_{\text {view }} \mathbf{M}_{\text {model }} \mathbf{p}
$$

The first matrix is OpenGL's GL_PROJECTION matrix
The second two matrices, taken as a product are maintained on OpenGL's GL MODELVIEW stack
$\mathbf{M}_{\text {modelview }}=\mathbf{M}_{\text {view }} \mathbf{M}_{\text {mode }}$

Robot arm code, revisited

Recall that the code for the robot arm looked
Computing the particle launch
point
find the world coordinate position of the end of the robot arm, you need to follow a series of steps:

1. Figure out what $\mathbf{M}_{\text {view }}$ is before drawing your modet.4f matCam = glGetModelViewMatrix()
.Draw your model and add one more transformation to the tip of the robot arm.

3м\&ะamplate iclexform = getworldxform(matCam);
2. Transform a point at the origin by the resulting ec3mmatrixicleorigin $=$ particlexform * Vec $3 f(\theta, 0,0)$

Now you're ready to launch a particle from that last computed point!

Summary

What you should take away from this lecture:

- The meanings of all the boldfaced terms
- Euler method for solving differential
equations
Combining particles into a particle system
- Physics of a particle system
- Various forces acting on a particle
- Simple collision detection
- How to hook your particle system into the
coordinate frame of your model

