

Reading

Recommended:

- Tanimoto. "Filtering", in An Interdisciplinary Introduction to Image Processing: Pixels, Number
10.14.

Motivation in terms of

Convolution
mage filtering: convolution is the most common Uses for Fourier approach

Computational cost: convolution of an n by mage with an m by m kernel ?

Direct Method requires $\mathrm{n}^{2} \mathrm{~m}^{2}$ multiplications and additions.
m is on the order of n , then this is $\Omega\left(n^{4}\right)$.
With a "smart" approach, we can get this down to $\mathrm{O}\left(\mathrm{n}^{2} \log n\right)$

The smart approach makes use of the Discrete Fourier Transform.
other motivation: the Fourier Transform is a undamental mathematical concept in functional analysis and signal/image processing.

Bases for Vector Spaces
By using different bases, the same information
(vector) can be expressed in different ways.
This could be used to encrypt an image, for
example.
But it can be particularly helpful for tasks like filtering out various frequency components and for image analysis. Before we can explain the Fourier Transform, we need to consider bases that involve not just real numbers, but complex numbers.

Complex Numbers

$c=a+b i$
c is a complex number
and b are real numbers
$i=\sqrt{ }-1$
riginally invented in order to solve polynomial
equations like

$$
x^{2}+1=0
$$

Complex Exponentials	
Something particularly useful in Fourier transforms.	
$\mathrm{e}=2.71828 \ldots c=\sum_{n=0}^{\infty} \frac{1}{n!}-\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots$	
e^{x} is an exponentially growing function, where x is real.	
$e^{i \theta}$ is an oscillating function. Here θ is the phase angle.	
$\mathrm{e}^{\text {nie }}$ for $\mathrm{n}>1$ are also oscillating functions. Their frequencies of oscillation are harmonics of that of $\mathrm{e}^{\mathrm{i} \theta}$	
	7

The N th roots of 1 are $\mathrm{e}^{2 \mathrm{ki} \mathrm{\pi} / \mathrm{N}}$ for $\mathrm{k}=0,1,2, \ldots, \mathrm{~N}-1$ ω is a principal N th root of unity if it is an N th root of (unity) and all the other N th roots of 1 are powers of ω.

> Definition of the Discrete Fourier Transform
> Let's enlarge the key formula.
> $\mathrm{f}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{N}-1} \mathrm{C}_{\mathrm{k}} \mathrm{e}^{2 \mathrm{ki} \pi \mathrm{n} / \mathrm{N}}$

Fourier Transforms in

 Image Processingsince an image is 2 -dimensional, we usually apply
he DFT to an image in two passes: row
ansforms, and then column transforms.
The order of these should not matter, according to heory.)

Column
transforms transforms

Filtering with the DFT

Make sure image is 2^{k} by 2^{k} in size, and represented as complex
Optional: adjust coordinate system of transform
image)
Edit" the transtormage
(Optional: restore coordinate system of transform image)

基 exponent,
andide result by $1 / \mathrm{N}$ in each pass.)
In some cases, editing means setting some frequency components to zero
multiplying the FT of th image by the FT of the convolution kernel.

The inverse 2 D DFT is equivalent to the (forward) 2 D DFT, except that at the end, each element must be divided by a scale factor N^{2}. This can be done as division by N after the inverse row transforms and another division by N after the inverse column transforms, or all at the end

Note: There is a Fast Fourier Transform

The "Fast Fourier Transform" (FFT) performs the summation of weighted pixel values in a clever manner, saving a lot of time. It's based on the fact that the weights (Nth roots of unity) are all related.
omputing the DFT at a particular value x is

$$
1, \omega, \omega^{2} \ldots, \ldots u^{N-1}
$$

Note: Key Ideas behind the FFT quivalent to evaluating a polynomial at x.

Given the input:

$$
\int_{0}, f_{1} \ldots, f_{N-1]}
$$

we just need to evaluate

$$
P(x)=f_{0} x^{N}+f_{1} x^{2}+\cdots+f_{N-1} x^{N-1}
$$

The important values of x are the powers of ω which is a principal root of unity

The DFT of the input will be equivalent to
$\left.\mathrm{P}(1), \mathrm{P}(\omega), \mathrm{P}\left(\omega^{2}\right), \ldots, \mathrm{P}\left(\omega^{\mathrm{N}-1}\right)\right]$

Note: Key Ideas: Divide and Conquer

Note: Key Ideas: 2 for the price of 1

Whenever we compute $\mathrm{P}\left(\omega^{k}\right)$ we also comput $\left(\omega^{k+N / 2}\right)$

One instance of computing these two values is called a "butterfly step"
minor modifications we turn each $P_{\text {even }}$ and $P_{\text {odd }}$ which are "sparse" polynomials are normal polynomial but of degree $N / 2$.

If we unwind the entire recursive computation, we can see a data flow graph of the whole operation.

$$
\begin{aligned}
& P\left(\omega^{*}\right)=Q_{\mathrm{cvar}}\left(\omega^{2 h}\right)+\omega^{t} Q_{\text {odd }}\left(\omega^{2 h}\right)
\end{aligned}
$$

Each butterfly step requires one multiplication and two additions.
There are $n / 2 \log _{2} n$ butterfly steps.
Thus the FFT requires $\Theta(n \log n)$ time.

Cost of Convolution of an \mathbf{n} by \mathbf{n} image with another n by n image.
his is a somewhat hypothetical example, because, without padding, we are assuming that he images are sections of periodic 2 D functions.
More typical: the kernel is smaller, and some padding is added to the big image.)

1. Perform the 2DDFT of the rows of each image. 1. Perform the 2DDF of the rows of each image.
2. ransformed images.
3. Multiply the two resulting images, pixel-by pixel.
Perform inverse column transformations on the oduct image.
4. Perform inverse row transformations on the previous result

Time required:
(2n(n $\log n)$) time for each of steps 1, 2, 3, 4. $\mathrm{O} \mathrm{n}^{2}$) for step 5
overall: $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$

Summary

What to take home:

- The meanings of all the boldfaced terms.
- How to perform convolution using the Fourier
transform
Vector basis used by the Discrete Fourier transform
Key ideas in the Fast Fourier Transform

