
1

Image Filtering and
the Fourier Transform

Steven Tanimoto

CSE 457
Spring 2012

1

Reading

Recommended:

 Tanimoto. "Filtering", in An Interdisciplinary
Introduction to Image Processing: Pixels,
Numbers, and Programs, Sections 10.10-
10.14.

2

Motivation in terms of
Convolution
Image filtering: convolution is the most common
approach.

Computational cost: convolution of an n by n
image with an m by m kernel ?

Direct Method requires n2m2 multiplications and
additions.

If m is on the order of n, then this is (n4).

With a "smart" approach, we can get this down to
O(n2 log n).

The smart approach makes use of the Discrete
Fourier Transform.

3

Other motivation: the Fourier Transform is a
fundamental mathematical concept in functional
analysis and signal/image processing.

Uses for Fourier
Transforms

Analyze sound: speech, music, sounds from
nature, sounds from machines,

Synthesize sound, filter sound

Filter images for image enhancement

Filter image for image analysis

Analyze the optical properties of cameras and
scanners

Measure shape of objects and characteristics of
textures in images

4

2

Bases for Vector Spaces

By using different bases, the same information
(vector) can be expressed in different ways.

This could be used to encrypt an image, for
example.

But it can be particularly helpful for tasks like
filtering out various frequency components and for
image analysis.

Before we can explain the Fourier Transform, we
need to consider bases that involve not just real
numbers, but complex numbers.

5

Complex Numbers

c = a + b i

c is a complex number
a and b are real numbers

i = -1

Originally invented in order to solve polynomial
equations like

x2 + 1 = 0

6

Complex Exponentials

Something particularly useful in Fourier transforms.

e = 2.71828…

ex is an exponentially growing function, where x is
real.

ei is an oscillating function. Here  is the phase
angle.

7

eni for n > 1 are also oscillating functions. Their
frequencies of oscillation are harmonics of that of ei

Complex Exponentials
(cont.)

Graph of ei

I ’ h “ i i l ”It’s the “unit circle”

(0+0i) (1+0i)

(0+1i)



ei

8

3

Complex Exponentials
(cont.)

Graph of ei

I ’ h “ i i l ”It’s the “unit circle”

(0+0i) (1+0i)

(0+1i)



ei

9

Leonard Euler’s amazing identity: ei + 1 = 0

Complex nth roots of 1

The Nth roots of 1 are e 2ki/N for k = 0, 1, 2, …, N-1.
i i i l Nth t f it if it i Nth t f 1 is a principal Nth root of unity if it is an Nth root of 1

(unity) and all the other Nth roots of 1 are powers of .

(0+0i) (1+0i)

10

 = 2k  / NExample with N = 6

Separating the Real and
Imaginary Parts of ei

real(ei) = cos ()

imag(ei) = sin 

11

Definition of the Discrete
Fourier Transform

Let S be a sequence of N complex numbers:
S = [c0, c1, …, cN-1] =

[b i b i b i][a0+b0i, a1+b1i, …, aN-1+bN-1i]

The Discrete Fourier Transform DFT(S) is defined
as follows

DFT(S) = [f0, f1, …, fN-1] , where

fn =  k=0,N-1 ck e 2kin / N

Th h l t f f DFT(S) i i ht d f

12

Thus each element fn of DFT(S) is a weighted sum of
elements of S,

but each weight is a complex Nth root of 1.

4

Definition of the Discrete
Fourier Transform

Let’s enlarge the key formula.

N 1N-1

fn =  ck e 2kin / N
k=0

13

Fourier Transforms in
Image Processing

Since an image is 2-dimensional, we usually apply
the DFT to an image in two passes: rowthe DFT to an image in two passes: row
transforms, and then column transforms.
(The order of these should not matter, according to
theory.)

Row
transforms

Column
transforms

14

Filtering with the DFT
Make sure image is 2k by 2k in size, and represented

as complex.
Perform the 2D DFT
(Optional: adjust coordinate system of transform

image)
“Edit” the transform imageEdit the transform image
(Optional: restore coordinate system of transform

image)
Perform the inverse 2D DFT
(use opposite sign for each weighting factor’s

exponent,
and divide result by 1/N in each pass.)

In some cases, editing means setting some frequency
components to zero.

In other cases it means multiplying the FT of the

15

In other cases, it means multiplying the FT of the
image by the FT of the convolution kernel.

The Inverse 2D DFT is equivalent to the (forward) 2D
DFT, except that at the end, each element must be
divided by a scale factor N2. This can be done as
division by N after the inverse row transforms and
another division by N after the inverse column
transforms, or all at the end.

Filtering with the DFT

16

Original, 2DDFT,
edited 2DDFT, inverse-2DDFT result.

5

Note: There is a Fast Fourier Transform

The “Fast Fourier Transform” (FFT) performs the
summation of weighted pixel values in a clever g p
manner, saving a lot of time. It’s based on the
fact that the weights (Nth roots of unity) are all
related.

17

Note: Key Ideas behind the FFT

Computing the DFT at a particular value x is
equivalent to evaluating a polynomial at x.

Given the input:

we just need to evaluate

The important values of x are the powers of 
which is a principal root of unity.

18

The DFT of the input will be equivalent to

[P(1), P(), P(2), . . . , P(N-1)]

Note: Key Ideas: Divide and Conquer

The polynomial P(x) can be split into two parts:

With some minor modifications we turn each of
Peven and Podd which are "sparse" polynomials
into Qeven and Qodd, which are normal polynomials
but of degree N/2

19

but of degree N/2.

This gives us a recurrence that we can use to
good effect:

Note: Key Ideas: 2 for the price of 1

Whenever we compute P(k) we also compute
P(k+N/2)

One instance of computing these two values is
called a "butterfly step".

If we unwind the entire recursive computation, we
can see a data flow graph of the whole operation

20

can see a data flow graph of the whole operation.

6

Data Flow Diagram for the FFT

21

Computational Complexity of the FFT

Each butterfly step requires one multiplication
and two additions.

There are n/2 log2 n butterfly steps.

Thus the FFT requires (n log n) time.

22

Cost of Convolution of an n by n image
with another n by n image.

This is a somewhat hypothetical example,
because, without padding, we are assuming that
the images are sections of periodic 2D functions.

(More typical: the kernel is smaller, and some
padding is added to the big image.)

1. Perform the 2DDFT of the rows of each image.
2. Perform the 2DDFT of the columns of the row-
transformed images.
3. Multiply the two resulting images, pixel-by-
pixel.
4. Perform inverse column transformations on the
product image

23

product image.
5. Perform inverse row transformations on the
previous result

Time required:
O(2n(n log n)) time for each of steps 1, 2, 3, 4.
O(n2) for step 5.
Overall: O(n2 log n)

Summary

What to take home:

 The meanings of all the boldfaced terms.
 How to perform convolution using the Fourier

transform.
 Vector basis used by the Discrete FourierVector basis used by the Discrete Fourier

transform.
 Key ideas in the Fast Fourier Transform.

24

