
1

Distribution Ray Tracing

Steven Tanimoto

Adapted from materials by Brian Curless and Daniel Leventhal

CSE 457
Spring 2012

1

Reading

Required:

 Shirley, section 10.11

Further reading:

 Watt, sections 10.4-10.5

 A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

 Robert L. Cook, Thomas Porter, Loren
Carpenter.
“Distributed Ray Tracing.” Computer Graphics
(Proceedings of SIGGRAPH 84). 18 (3). pp.
137-145. 1984.

 James T. Kajiya. “The Rendering Equation.”

2

Computer Graphics (Proceedings of SIGGRAPH
86). 20 (4). pp. 143-150. 1986.

Pixel anti-aliasing

No anti-aliasing

3

Pixel anti-aliasing

All of this assumes that inter-reflection behaves in
a mirror-like fashion…

BRDF, revisited
Recall that we could view light reflection in terms of
the general Bi-directional Reflectance Distribution
Function (BRDF):

BRDF’s exhibit reciprocity:

()outinrf

That means we can take two equivalent views of
reflection. Suppose in = L and out = V:

L

()rf VL

V

()rf LV

(())out outin inr rf f

4

We can now think of the BRDF as weighting light
coming in from all directions, which can be added
up:

Or, written more generally:

 () () ()
H

rI I f d VV L L L N L

 () () ()
H

out outin in in inrI I f d N

2

Simulating gloss and
translucency

The mirror-like form of reflection, when used to
approximate glossy surfaces, introduces a kind of
aliasing, because we are under-sampling
reflection (and refraction).

For example:p

Distributing rays over reflection directions gives:

5

Reflection anti-aliasing

Reflection anti-aliasing

6

Pixel and reflection anti-aliasing

Pixel and reflection anti-aliasing

7

Full anti-aliasing

Full anti-aliasing…lots of nested integrals!

8

Computing these integrals is prohibitively
expensive, especially after following the rays
recursively.

We’ll look at ways to approximate high-
dimensional integrals…

3

Let’s return to the glossy reflection model, and
modify it – for purposes of illustration – as follows:

Glossy reflection revisited

We can visualize the span of rays we want to
integrate over, within a pixel:

9

Returning to the reflection example, Whitted ray
tracing replaces the glossy reflection with mirror
reflection:

Whitted ray tracing

Thus, we render with anti-aliasing as follows:

10

Let’ return to our original (simplified) glossy
reflection model:

Monte Carlo path tracing

An alternative way to follow rays is by making
random decisions along the way – a.k.a., Monte
Carlo path tracing. If we distribute rays uniformly
over pixels and reflection directions, we get:

11

The problem is that lots of samples are “wasted.”
Using again our glossy reflection model:

Importance sampling

Let’s now randomly choose rays, but according to
a probability that favors more important reflection
directions, i.e., use importance sampling:

12

4

We still have a problem that rays may be clumped
together. We can improve on this by splitting
reflection into zones:

Stratified sampling

Now let’s restrict our randomness to within these
zones, i.e. use stratified sampling:

13

Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling
over a 2D pixel (here 16 rays/pixel):

The stratified pattern on the right is also
sometimes called a jittered sampling pattern.

Random Stratified

14

One interesting side effect of these stochastic
sampling patterns is that they actually injects
noise into the solution (slightly grainier images).
This noise tends to be less objectionable than
aliasing artifacts.

Distribution ray tracing

These ideas can be combined to give a particular
method called distribution ray tracing [Cook84]:

 uses non-uniform (jittered) samples.

 replaces aliasing artifacts with noise.

 provides additional effects by distributingprovides additional effects by distributing
rays to sample:
• Reflections and refractions

• Light source area

• Camera lens area

• Time

[This approach was originally called “distributed
ray tracing,” but we will call it distribution ray

15

y g, y
tracing (as in probability distributions) so as not to
confuse it with a parallel computing approach.]

DRT pseudocode

TraceImage() looks basically the same, except
now each pixel records the average color of
jittered sub-pixel rays.

function traceImage (scene):

f h i l (i j) i i dfor each pixel (i, j) in image do

I(i, j) 0

for each sub-pixel id in (i,j) do

s pixelToWorld(jitter(i, j, id))

p COP

d (s - p).normalize()

I(i, j) I(i, j) + traceRay(scene, p, d, id)

end for

16

end for

I(i, j) I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 5*5.

5

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material) intersect (scene, p, d)

I shade(…)

R jitteredReflectDirection(N, -d, material, id)

I I + material.kr traceRay(scene, q, R, id)

return I

end function

17

Pre-sampling glossy reflections
(Quasi-Monte Carlo)

18

Soft shadows

Distributing rays over light source area gives:

19

The pinhole camera, revisited

Recall the pinhole camera:

We can equivalently turn this around by following
rays from the viewer:

20

6

The pinhole camera, revisited

Given this flipped version:

how can we simulate a pinhole camera more
accurately?

21

Pinhole cameras in the real world require small
apertures to keep the image in focus.

Lenses focus a bundle of rays to one point => can
have larger aperture.

Lenses

For a “thin” lens, we can approximately calculate
h bj t i t ill b i f i th th

22

where an object point will be in focus using the the
Gaussian lens formula:

where f is the focal length of the lens.

1 1 1

i od d f

Depth of field

Lenses do have some limitations. The most noticeable
is the fact that points that are not in the object plane will
appear out of focus.

The depth of field is a measure of how far from the
object plane points can be before appearing “too blurry.”

23http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Simulating depth of field
Consider how rays flow between the image plane
and the in-focus plane:

We can model this as simply placing our image
plane at the in-focus location, in front of the finite
aperture, and then distributing rays over the
aperture (instead of the ideal center of projection):

24

7

Simulating depth of field, cont’d

25

In general, you can trace rays through a scene
and keep track of their id’s to handle all of these
effects:

Chaining the ray id’s

26

DRT to simulate

Distributing rays over time gives:

27

Summary

What to take home from this lecture:

1. The limitations of Whitted ray tracing.

2. How distribution ray tracing works and what
effects it can simulate.

28

