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Reading

Required:

 Shirley, section 10.11

Further reading:

 Watt, sections 10.4-10.5 

 A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. [In the lab.]

 Robert L. Cook, Thomas Porter, Loren 
Carpenter.
“Distributed Ray Tracing.”  Computer Graphics 
(Proceedings of SIGGRAPH 84). 18 (3). pp. 
137-145. 1984.

 James T. Kajiya. “The Rendering Equation.”  
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Computer Graphics (Proceedings of SIGGRAPH 
86). 20 (4). pp. 143-150. 1986.

Pixel anti-aliasing

No anti-aliasing
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Pixel anti-aliasing

All of this assumes that inter-reflection behaves in 
a mirror-like fashion…

BRDF, revisited
Recall that we could view light reflection in terms of 
the general Bi-directional Reflectance Distribution 
Function (BRDF):

BRDF’s exhibit reciprocity:
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That means we can take two equivalent views of 
reflection.  Suppose in = L and out = V:
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We can now think of the BRDF as weighting light 
coming in from all directions, which can be added 
up:

Or, written more generally:
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Simulating gloss and 
translucency

The mirror-like form of reflection, when used to 
approximate glossy surfaces, introduces a kind of 
aliasing, because we are under-sampling 
reflection (and refraction).

For example:p

Distributing rays over reflection directions gives:
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Reflection anti-aliasing

Reflection anti-aliasing
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Pixel and reflection anti-aliasing

Pixel and reflection anti-aliasing
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Full anti-aliasing

Full anti-aliasing…lots of nested integrals!
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Computing these integrals is prohibitively 
expensive, especially after following the rays 
recursively.

We’ll look at ways to approximate high-
dimensional integrals…
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Let’s return to the glossy reflection model, and 
modify it – for purposes of illustration – as follows:

Glossy reflection revisited

We can visualize the span of rays we want to 
integrate over, within a pixel:
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Returning to the reflection example, Whitted ray 
tracing replaces the glossy reflection with mirror 
reflection:

Whitted ray tracing

Thus, we render with anti-aliasing as follows:

10

Let’ return to our original (simplified) glossy 
reflection model:

Monte Carlo path tracing

An alternative way to follow rays is by making 
random decisions along the way – a.k.a., Monte 
Carlo path tracing.  If we distribute rays uniformly 
over pixels and reflection directions, we get:
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The problem is that lots of samples are “wasted.”  
Using again our glossy reflection model:

Importance sampling

Let’s now randomly choose rays, but according to 
a probability that favors more important reflection 
directions, i.e., use importance sampling:
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We still have a problem that rays may be clumped 
together.  We can improve on this by splitting 
reflection into zones:

Stratified sampling

Now let’s restrict our randomness to within these 
zones, i.e. use stratified sampling:
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Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling 
over a 2D pixel  (here 16 rays/pixel):

The stratified pattern on the right is also 
sometimes called a jittered sampling pattern.

Random Stratified
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One interesting side effect of these stochastic 
sampling patterns is that they actually injects 
noise into the solution (slightly grainier images).  
This noise tends to be less objectionable than 
aliasing artifacts.

Distribution ray tracing

These ideas can be combined to give a particular 
method called distribution ray tracing [Cook84]:

 uses non-uniform (jittered) samples.

 replaces aliasing artifacts with noise.

 provides additional effects by distributingprovides additional effects by distributing 
rays to sample:
• Reflections and refractions

• Light source area

• Camera lens area 

• Time

[This approach was originally called “distributed 
ray tracing,” but we will call it distribution ray 
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y g, y
tracing (as in probability distributions) so as not to 
confuse it with a parallel computing approach.] 

DRT pseudocode

TraceImage() looks basically the same, except 
now each pixel records the average color of 
jittered sub-pixel rays.

function traceImage (scene):

f h i l (i j) i i dfor each pixel (i, j) in image do

I(i, j)  0

for each sub-pixel id in (i,j) do

s  pixelToWorld(jitter(i, j, id))

p  COP

d (s - p).normalize()

I(i, j)  I(i, j) + traceRay(scene, p, d, id)

end for
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end for

I(i, j)  I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 5*5.
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DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only) 
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material)   intersect (scene, p, d)

I  shade(…)

R  jitteredReflectDirection(N, -d, material, id)

I  I + material.kr  traceRay(scene, q, R, id)

return I

end function
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Pre-sampling glossy reflections
(Quasi-Monte Carlo)
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Soft shadows

Distributing rays over light source area gives:
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The pinhole camera, revisited

Recall the pinhole camera:

We can equivalently turn this around by following 
rays from the viewer:

20



6

The pinhole camera, revisited

Given this flipped version:

how can we simulate a pinhole camera more 
accurately?
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Pinhole cameras in the real world require small 
apertures to keep the image in focus.  

Lenses focus a bundle of rays to one point => can 
have larger aperture.

Lenses

For a “thin” lens, we can approximately calculate 
h bj t i t ill b i f i th th
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where an object point will be in focus using the the 
Gaussian lens formula:

where f is the focal length of the lens.

1 1 1
 

i od d f

Depth of field

Lenses do have some limitations.  The most noticeable 
is the fact that points that are not in the object plane will 
appear out of focus.  

The depth of field is a measure of how far from the 
object plane points can be before appearing “too blurry.”

23http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Simulating depth of field
Consider how rays flow between the image plane 
and the in-focus plane:

We can model this as simply placing our image 
plane at the in-focus location, in front of the finite 
aperture, and then distributing rays over the 
aperture (instead of the ideal center of projection):
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Simulating depth of field, cont’d
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In general, you can trace rays through a scene 
and keep track of their id’s to handle all of these 
effects:

Chaining the ray id’s
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DRT to simulate 
_________________

Distributing rays over time gives:
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Summary

What to take home from this lecture:

1. The limitations of Whitted ray tracing.

2. How distribution ray tracing works and what 
effects it can simulate.
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