

Reading

Required reading:

- Angel 3.1-3.11 (Geometric Objects and Transformations: Scalars, Points, and Vectors through Transformation Matrices in OpenGL)
Optional reading:
- Angel 3.12-3.14
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, $2^{\text {nd }}$ Ed., McGraw-Hill, New York, 1990, Chapter 2.

Linear Interpolation

Geometric transformations
Geometric transformations will map points in one
space to points in another: $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=f(x, y, z)$.
These transformations can be very simple, such
as scaling each coordinate, or complex, such as
non-linear twists and bends.
We'll focus on transformations that can be
represented easily with matrix operations.

Canonical axes

Vector representation

We can represent a point, $\mathbf{p}=(x, y)$, in the plane or $p=(x, y, z)$ in 3D space

- as column vectors

- as row vectors

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x & y
\end{array}\right]} \\
& {\left[\begin{array}{lll}
x & y & z
\end{array}\right]}
\end{aligned}
$$

\square

Inverse \& Transpose

Two-dimensional transformations

Here's all you get with a 2×2 transformation matrix M :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

So:

$$
\begin{aligned}
x^{\prime} & =a x+b y \\
y^{\prime} & =c x+d y
\end{aligned}
$$

We will develop some intimacy with the elements $a, b, c, d .$.

If \mathbf{p} is a row vector, M^{\top} goes on the right:

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{p} \mathbf{M}^{\top} \\
{\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]}
\end{gathered}
$$

We will use column vectors.

Identity

Suppose we choose $a=d=1, b=c=0$:

- Gives the identity matrix:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Doesn't move the points at all

\section*{| L |
| :--- |
| |}

Suppose we keep $b=c=0$, but let either a or d go
negative.
Examples:
$\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Scaling

Suppose we set $b=c=0$, but let a and d take on any positive value:

- Gives a scaling matrix:

$$
\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]
$$

- Provides differential (non-uniform) scaling in x and y :

$$
y^{\prime}=d y
$$

14

Now let's leave $a=d=1$ and experiment with $b . \ldots$

The matrix

$$
\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]
$$

gives:

$$
\begin{aligned}
& x^{\prime}=x+b y \\
& y^{\prime}=y
\end{aligned}
$$

Effect on unit square

Let's see how a general 2×2 transformation M affects the unit square:
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{llll}\mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s}\end{array}\right]=\left[\begin{array}{llll}\mathbf{p}^{\prime} & \mathbf{q}^{\prime} & \mathbf{r}^{\prime} & \mathbf{s}^{\prime}\end{array}\right]$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{llll}0 & a & a+b & b \\ 0 & c & c+d & d\end{array}\right]$

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$\cdot\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow$
$\cdot\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow$
Thus,

$$
M=R(\theta)=[
$$

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Limitations of the 2×2 matrix

A 2×2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

We can loft the problem up into 3-space, adding a third component to every point:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Adding the third " w " component puts us in homogenous coordinates.

Then, transform with a 3×3 matrix:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=T(\mathbf{t})\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llr}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

. . . gives translation!

Affine transformations

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations always look like this:

$$
M=\left[\begin{array}{lll}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\left.\begin{array}{c|c}
A & \mathbf{t} \\
\hline 0 & 0
\end{array} \right\rvert\, 1\right]
$$

2D affine transformations always have a bottom row of $\left[\begin{array}{lll}0 & 1\end{array}\right]$.

An "affine point" is a "linear point" with an added w-coordinate which is always 1 :

$$
\mathbf{p}_{\mathrm{aff}}=\left[\begin{array}{c}
\mathbf{p}_{\text {lin }} \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Applying an affine transformation gives another affine point:

$$
\begin{aligned}
& M \mathbf{p}_{\mathrm{aff}}=\left[\begin{array}{c}
A \mathbf{p}_{\mathrm{lin}}+\mathbf{t} \\
1
\end{array}\right] \\
& 22
\end{aligned}
$$

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, θ, about any point $\mathbf{q}=\left[q_{x} q_{y} 1\right]^{\top}$ with a matrix:

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back

Note: Transformation order is important!!

Points and vectors

Vectors have an additional coordinate of $w=0$. Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine matrix?

These representations reflect some of the rules of affine operations on points and vectors:

$$
\begin{array}{cl}
\text { vector + vector } & \rightarrow \\
\text { scalar • vector } & \rightarrow \\
\text { point - point } & \rightarrow \\
\text { point + vector } & \rightarrow \\
\text { point + point } & \rightarrow
\end{array}
$$

One useful combination of affine operations is:

$$
\mathbf{p}(t)=\mathbf{p}_{o}+t \mathbf{u}
$$

Q: What does this describe?

Basic 3-D transformations: scaling

Some of the 3-D affine transformations are just like the 2-D ones.

In this case, the bottom row is always [00011].
For example, scaling:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation in 3D

Rotation now has more possibilities in 3D:

A general rotation can be specified in terms of a prodcut of these three matrices. How else might you specify a rotation?

Translation in 3D

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

$$
\text { ratio }=\frac{\|\mathbf{p q}\|}{\|\mathbf{q}\| \|}=\frac{s}{t}=\frac{\left\|\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\|}{\left\|\mathbf{q}^{\prime} \mathbf{r}^{\prime}\right\|}
$$

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation \mathbf{M}.

The modelview matrix is applied to points (usually vertices of polygons) before drawing

It is modified by commands including:

- glLoadIdentity() $\mathbf{M} \leftarrow \mathbf{I}$
- set M to identity
- glTranslatef $\left(t_{x}, t_{y}, t_{z}\right) \quad \mathbf{M} \leftarrow \mathbf{M T}$
- translate by $\left(t_{x}, t_{y}, t_{z}\right)$
- glRotatef $(\theta, x, y, z) \quad \mathbf{M} \leftarrow \mathbf{M R}$ - rotate by angle θ about axis (x, y, z)

$$
\text { - glScalef }\left(s_{x}, s_{y}, s_{z}\right) \quad \mathbf{M} \leftarrow \mathbf{M S}
$$

$$
\text { - scale by }\left(s_{x}, s_{y}, s_{z}\right)
$$

Note that OpenGL adds transformations by postmultiplication of the modelview matrix.

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are
- What all the elements of a 2×2 transformation matrix do and how these generalize to 3×3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations

