
Due: Thursday, April 28th by the stroke of midnight!

TA: Jeff Booth

� Checking out, building, and using the sample

solution

� Part 1: Rendering a Sphere

Part 2: Hierarchical Modeling� Part 2: Hierarchical Modeling

� Part 3: gluLookAt()

� Part 4: Blinn-Phong Shader

� Part 5: Custom Shader

� Go to the Modeler course page for detailed

check-out directions.

� Repository path:

svn+ssh://Your CSE � svn+ssh://Your CSE

NetID@attu.cs.washington.edu/projects/instr/11s

p/cse457/modeler/Your Group ID/source

� Go to your project folder

� Double-click the .vcxproj file

� Configuration menu next to green arrow

Debug – lets you set breakpoints� Debug – lets you set breakpoints

� Release – for turn-in

� Pick Debug, then click the green arrow next

to it to build and run your project

� Let us know if it doesn’t build!

List of

Controls

Control

Groups View of your model

Move the camera by dragging

the mouse while holding down:Controls the mouse while holding down:

Left button: rotate the

view like a huge trackball.

Right button (or left button +

CTRL): zoom in/out

Middle button (or left button +

SHIFT): pan

� Partner A: Modeling

� Part 1: Hierarchical

Modeling

� Part 2: Custom Primitive

� Partner B: Shading

� Part 4: Blinn-Phong

Shader

� Part 5: Custom Shader� Part 2: Custom Primitive

� Either Partner:

� Part 3: gluLookAt()

� Part 5: Custom Shader

� NOTE: this division of

labor is just a

suggestion!

� You will write OpenGL
code to draw a sphere.

� Each vertex must have
an appropriate:
� Texture coordinate pair� Texture coordinate pair

� Vertex normal

� Position
� Replace code for

drawSphere() in
modelerdraw.cpp
� The divisions variable

determines number of
slices

� Determine (x,y,z)
coordinates of each
point using sphere
radius, latitude θ and
longitude ɸlongitude ɸ

� For trig:
� Give degrees to all GL

functions

� Give radians to C++
math functions (sin(),
cos(), etc.)

� Divide sphere into

“rings” (purple lines) by

latitude

� # of rings = divisions � # of rings = divisions

variable

� Fill in the area between

each ring (dark blue

region) with a strip of

polygons

� Divide slices into

quadrilaterals by

longitude

� # of slices = divisions� # of slices = divisions

variable!

� Connect the dots with

OpenGL quadrilaterals

or triangles.

glBegin(DRAW_TYPE);

…

glNormal3f(0, 1, 0);

glTexCoord2f(0,0);

� Tell OpenGL what

primitive you’re

drawing with glBegin()

� GL_TRIANGLESglTexCoord2f(0,0);

glVertex3f(1, 2, 3);

…

glEnd();

� GL_TRIANGLES

� GL_TRIANGLE_STRIP

� GL_TRIANGLE_FAN

� GL_QUADS

� GL_QUAD_STRIP

� Use strip primitives like

GL_QUAD_STRIP for

connected polygons

� If you send 12 points to If you send 12 points to

graphics card:

� GL_QUADS draws 3 quads

� GL_QUAD_STRIP draws 5

quads by reusing points for

more than one quad.

� Order matters – see

diagram!

Diagram comparing quads drawn by

GL_QUADS and GL_QUAD_STRIP, given

the same points (from

http://math.hws.edu/graphicsnotes/c3/s2.

html)

� See lecture slides for

spherical texture

mapping

� Basic idea: use latitude � Basic idea: use latitude

and longitude as texture

coordinates

� Surfaces of Rotation

� Smooth Surfaces

� Swept Surfaces

� Rail Surfaces� Rail Surfaces

� Non-Linear

Transformations

� Heightfields

� Most are easy once

you implement the

sphere! Smooth fishy surface (Michael Kidd and

Igor Tolkov, Spring 2010)

� You must make a

character with:

� 2 levels of branching

� Something drawn at

� You will need to:

� Extend the Model class

� Override the draw()

method� Something drawn at

each level

� Meaningful controls

▪ Otherwise, you will be

overwhelmed when you

animate it!

method

� Add properties that

Modeler users can control

� Give an instance of your

class to

ModelerUserInterface in

the main() function

� In sample.cpp, the

Scene class extends

Model

� draw() method draws

� Where are the drawing

commands?

� Modelerdraw.cpp

▪ drawBox� draw() method draws

the green floor, sphere,

and cylinder

� Add and replace drawing

commands of your own

▪ drawBox

▪ drawCylinder

▪ drawSphere

� Kinds of properties (in
properties.h):
� BooleanProperty =

checkbox

� RangeProperty = sliderRangeProperty = slider

� RGBProperty = color

� ChoiceProperty = radio
buttons

� Need to add it to:
1. Class definition

2. Constructor

3. Property list
� See sample.cpp for

example

� glEnable()/glDisable() changes state

� Once you change something, it stays that

way until you change it to something new

OpenGL’s state includes:� OpenGL’s state includes:

� Current color

� Transformation matrices

� Drawing modes

� Light sources

� Just two of them: projection and modelview.
We’ll modify modelview.

� Matrix applied to all vertices and normals
� These functions multiply transformations: � These functions multiply transformations:

glRotated(), glTranslated(), glScaled()
� Applies transformations in REVERSE order

from the order in which they are called.
� Transformations are cumulative. Since

they’re all “squashed” into one matrix, you
can’t “undo” a transformation.

� How do we get back to an earlier

transformation matrix?

� We can “remember” it

OpenGL maintains a stack of matrices.� OpenGL maintains a stack of matrices.

� To store the current matrix, call glPushMatrix().

� To restore the last matrix you stored, call

glPopMatrix().

� Draw the body
� Use glPushMatrix() to

remember the current
matrix.
Imagine that a matrix � Imagine that a matrix
corresponds to a set of
coordinate axes:
� By changing your

matrix, you can move,
rotate, and scale the
axes OpenGL uses.

� Apply a transform:

� glRotated()

� glTranslated()

� glScaled()� glScaled()

� Here, we apply

glTranslated(1.5,2,0)

� All points translated 1.5

units left and 2 units up

� It’s as if we moved our

coordinate axes!

� Draw an ear.

� This ear thinks it was

drawn at the origin.

� Transformations let us � Transformations let us

transform objects

without changing their

geometry!

� We didn’t have to edit

that ear’s drawing

commands to transform

it

� Call glPopMatrix() to

return to the body’s

coordinate axes.

� To draw the other ear, � To draw the other ear,

call glPushMatrix()

again…

� Apply another

transform…

� Where will the ear be

drawn now?drawn now?

� Draw the other ear

� Then, call

glPopMatrix() to return

to the body’s “axes”

� Technically, you don’t � Technically, you don’t

need to if that second

ear is the last thing you

draw.

� But what if you wanted

to add something else to

the body?

� Make sure there’s a

glPopMatrix() for every

glPushMatrix()!

� You can divide your � You can divide your

draw() function into a

series of nested

methods, each with a

push at the beginning

and a pop at the end.

� Your scene must have
two levels of branching
like in this diagram.
� Circles are objects

� Arrows are � Arrows are
transformations

� Call glPushMatrix() for
green, so you can draw
orange after drawing red
� Do the same for orange

� You must draw
something at each level.

� Needs to control multiple aspects of your

model.

� Example: Rotate multiple joints at once

Don’t get too complicated!� Don’t get too complicated!

� Wait for Animator in four weeks!

� OpenGL’s Camera/Eye
� Position: The origin

� Direction: Looking down the
–z axis

� Up Vector:Y-axis
corresponds to “up”corresponds to “up”

� Since we can’t move the
camera, we move the
world instead – it has the
same effect.

� A function called
gluLookAt() does this.
� You will replace the call to

gluLookAt() in camera.cpp
with code that does the same
thing.

� You are given the

camera’s:

� Position

� Up-vector

+y
Up Vector

(ux,uy,uz)

Look-At Point

Position

(x,y,z)

Object

� Up-vector

� Look-at point

� Everything is in

world space.

� Here’s a side view

(looking down –x

axis)

Look-At Point

(lx,ly,lz)
+z -z

-y

� Use the position

and look-at point

to get direction

� Ending point –

starting point =

+y
Up Vector

(ux,uy,uz)

Direction

Position

(x,y,z)

Object

starting point =

vector from start to

end

� Normalize it

Direction

(dx,dy,dz)
+z -z

-y

� Apply a translation

to all vertices, so

that the camera’s

center lines up with

the origin.

+y

Up Vector

(ux,uy,uz)

the origin.

Direction

(dx,dy,dz)

Position

(x,y,z)

+z -z

-y

Object

� Up vector � +y

� Direction � -z
� How?

� glRotatef() – do the

rotations manually

+y

Up Vector

(ux,uy,uz)

rotations manually

� glMultMatrixf() –

create a custom

rotation matrix

(preferred)

Direction

(dx,dy,dz)

Position

(x,y,z)

+z -z

-y

� See lecture slides for

gluLookAt()

� Make sure you

understand how works

� Mat.h has a useful

matrix class, but you

shouldn’t need it.
understand how works

� Lots of “magic code” on

the Internet

� You might be asked

about it during grading

� We provide a

directional light shader

in OpenGL Shading

Language (GLSL)

� Files to edit:

� shader.frag – your

fragment shader

� shader.vert – your vertex Language (GLSL)

� You must extend it to

support point lights.

� shader.vert – your vertex

shader

� modeler_solution.exe

in your project folder

� Loads your shader.frag

and shader.vert.and shader.vert.

� Also contains our

sample shaders.

� Use radio buttons to

compare with sample

solution

Choose shader here

� gl_LightSource[i].position.xyz – the position

of light source i.

� gl_FrontLightProduct[i] – object that stores

the product of a light’s properties with the the product of a light’s properties with the

current surface’s material properties:

� Example: gl_FrontLightProduct[i].diffuse ==

gl_FrontMaterial.diffuse *

gl_LightSource[i].diffuse

� Anything you want!
� Can earn extra credit!
� Ask TA’s for estimated

extra credit value of an
option.option.

� See the OpenGL orange
book in the lab for
details + code.

� Can still use sample
solution to test
(depending on
complexity)

� Make sure that your repository works by:
� Checking it out

� Building it

� Tweaking something

Committing� Committing
� Do this on each work environment you plan to

use, even if you aren’t going to start work yet:
� Lab machines

� Your home computer

� The sooner we know of a problem, the sooner we can
fix it.

� In general, never put anything besides source
code into source control:
� Debug and Release folders

� Modeler.suo

Modeler.ncb� Modeler.ncb

� *.user files
� DO put source files (*.cpp, *.h, *.vcproj, image

files, etc.) in the repository
� Make sure you both add AND commit the files.

� TortoiseSVN: when you commit, make sure all the
files you added have a checkmark.

THINGS TO DO

� Partner A: Modeling

� Part 1: Rendering a Sphere

� Part 2: Hierarchical Modeling

WARNINGS

� Don’t modify any files

except your model file and

the required modifications� Part 2: Hierarchical Modeling

� Either Partner:

� Part 3: gluLookAt()

� Partner B: Shading

� Part 4: Blinn-Phong Shader

� Part 5: Custom Shader

� You don’t have to divide

work up this way!

the required modifications

� Or, your model might not

work in Animator

� Make sure you can check

out, commit, and build!

� Try adjusting the sample model

� Let us know if you have problems

� COMMIT BEFORE LOGOFF!

� Your files in C:\User\... will go away when you log

out, due to Deep Freeze!

