Modeler Help Session

Due: Thursday, April 28t by the stroke of midnight!
TA: Jeff Booth

Help Session Overview

Checking out, building, and using the sample
solution

Part 1: Rendering a Sphere

Part 2: Hierarchical Modeling

Part 3: gluLookAt()

Part 4: Blinn-Phong Shader

Part 5: Custom Shader

Checking Out Your Code

Go to the Modeler course page for detailed
check-out directions.
Repository path:

svn+ssh://Your CSE
NetID@attu.cs.washington.edu/projects/instr/11s
p/cse457/modeler/Your Group ID/source

Building in Visual Studio

Go to your project folder
Double-click the .vexproj file
Configuration menu next to green arrow

Debug —lets you set breakpoints

Release —for turn-in
Pick Debug, then click the green arrow next
to it to build and run your project
Let us know if it doesn’t build!

Introducing Modeler

Control
Groups

List of
Controls

7 CSE 457 Modeler

[Fne View Animate

-~ Point Light
~.. Directional Light

CEEC

In(Specular Exponent)

)

Scene Ambient Light

]

|rgb |+ |
[0.100 |

(0100 |

[JUse Checkered Texiure
{_|Use My Shader

Rotate X

o] i]
Rotate Y

Co 0

Diffuse Color

(1000 |
[1.000 |

1000 |

—||rgp 2]
L i

@

Specular Color

[0.100 | |~

View of your model

Move the camera by dragging
the mouse while holding down:

Left button: rotate the
view like a huge trackball.

Right button (or left button +
CTRL): zoom in/out

Middle button (or left button +
SHIFT): pan

Dividing Up The Work

Partner A: Modeling

Part 1: Hierarchical
Modeling

Part 2: Custom Primitive

Either Partner:
Part 3: gluLookAt()

Partner B: Shading

Part 4: Blinn-Phong
Shader

Part 5: Custom Shader

NOTE: this division of
labor is just a
suggestion!

Part 1: Rendering a Sphere

You will write OpenGL
code to draw a sphere.
Each vertex must have
an appropriate:

Texture coordinate pair

Vertex normal

Position
Replace code for
drawSphere() in
modelerdraw.cpp

The divisions variable
determines number of
slices

Parameterizing a Sphere

Determine (x,y,z)
coordinates of each
point using sphere
radius, and
longitude ¢
For trig:
Give degrees to all GL
functions

Give radians to C++
math functions (sin(),
cos(), etc.)

Slicing It Into Polygon Strips

Divide sphere into
“rings” (purple lines) by
latitude

of rings = divisions e
variable AT
Fill in the area between
each ring (dark blue R e

region) with a strip of oo
polygons N

Drawing Each Polygon Strip

Divide slices into
quadrilaterals by
longitude

of slices = divisions
variable!

Connect the dots with
OpenGL quadrilaterals
or triangles.

Drawing with OpenGL

glBegin(DRAW_TYPE); Tell OpenGL what
primitive you're
glNormalzf(o, 1, 0); drawing with glBegin()
glTexCoord2f(o,0); GL_TRIANGLES
glVertex3f(z, 2, 3); GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN
glEnd(); GL_QUADS

GL_QUAD_STRIP

Using Strip Primitives

Use strip primitives like AL D . AL C o
GL_QUAD_STRIP for L/ Q?”H EQJ\;
connected polygons - F 'E'<J h

|
1 o
If you send 12 points to QuADS /. QUAD STRIP / ﬁ[

[L‘_
graphics card:
Diagram comparing quads drawn by
GL_QUADS draws3quads ;" uADS and GL_QUAD_STRIP, given

GL_QUAD_STRIP draws 5 the same points (from
quads by reusing points for http://math.hws.edu/graphicsnotes/c3/s2.

html
more than one quad. ntmy)

Order matters — see
diagram!

Spherical Texture Mapping

See lecture slides for

spherical texture

mapping 0
Basic idea: use latitude ok

and longitude as texture s =027
coordinates t =0/t

0,

Extra Credit: Cool Surfaces

Surfaces of Rotation
Smooth Surfaces
Swept Surfaces

Rail Surfaces
Non-Linear
Transformations
Heightfields

Most are easy once
you implement the
sphere!

Smooth fishy surface (Michael Kidd and
IgorTolkov, Spring 2010)

Part 2: Hierarchical Modeling

You must make a You will need to:
character with: Extend the Model class
2 levels of branching Override the draw()
Something drawn at method
each level Add properties that
Meaningful controls Modeler users can control
Otherwise, you will be Give an instance of your
overwhelmed when you class to
animate it ModelerUserlnterface in

the main() function

Building a Scene

In sample.cpp, the Where are the drawing
Scene class extends commands?
Model Modelerdraw.cpp
draw() method draws drawBox
the green floor, sphere, drawCylinder
and cylinder drawSphere

Add and replace drawing
commands of your own

Add Properties to Control It

Kinds of properties (in
properties.h):
BooleanProperty =

In{Specular Exponent)
checkbox | oo B
RangeProperty = slider Scene Ambient Light
RGBProperty = color -ﬁ
ChoiceProperty =radio
buttons
' . [JUse Checkered Texture
Need to add it to: e Gnecte
Class definition @ None
[1Student Shader
Constructor (")Solution Shader

Property list
See sample.cpp for
example

OpenGL Is A State Machine

changes state
Once you change something, it stays that
way until you change it to something new
OpenGL's state includes:

Current color
Transformation matrices
Drawing modes

Light sources

OpenGL's Transformation Matrix

Just two of them: and

We'll modify .

Matrix applied to all vertices and normals
These functions multiply transformations:

Applies transformations in REVERSE order
from the order in which they are called.
Transformations are . Since
they're all “squashed” into one matrix, you
can't "undo” a transformation.

Transformations: Going “Back”

How do we get back to an earlier
transformation matrix?
We can “remember” it
OpenGL maintains a of matrices.
To store the current matrix, call
To restore the last matrix you stored, call

Hierarchical Modeling in OpenGL

Draw the body .
Use glPushMatrix() to
remember the current
matrix.
Imagine that a matrix
corresponds to a set of
coordinate axes:
By changing your
matrix, you can move,

rotate, and scale the
axes OpenGL uses.

-X

Hierarchical Modeling in OpenGL

Apply a transform: N
glRotated() T

glTranslated()

glScaled()
Here, we apply x
glTranslated(z.5,2,0)

All points translated 1.5
units left and 2 units up

It's as if we moved our
coordinate axes!

Hierarchical Modeling in OpenGL

Draw an ear. A

This ear thinks it was

drawn at the origin.
Transformations let us
transform objects
without changing their
geometry!

We didn’t have to edit

that ear’s drawing

commands to transform
it

Hierarchical Modeling in OpenGL

Call glPopMatrix() to y
return to the body’s
coordinate axes.

To draw the other ear,
call glPushMatrix()
again...

Hierarchical Modeling in OpenGL

Apply another
transform...

Where will the ear be
drawn now?

Hierarchical Modeling in OpenGL

Draw the other ear N

Hierarchical Modeling in OpenGL

Then, call
glPopMatrix() to return
to the body’s “"axes”

Technically, you don't

need to if that second

earis the last thingyou ~
draw.

—> x

But what if you wanted
to add something else to
the body?

Rule: A Pop For Every Push

Make sure there’s a
glPopMatrix() for every
glPushMatrix()!

You can divide your
draw() function into a
series of nested
methods, each with a
push at the beginning
and a pop at the end.

Levels of Branching

Your scene must have P
two levels of branching v

like in this diagram. / \

Circles are objects

Arrows are

transformations u
Call glPushMatrix() for / \
green, so you can draw | | P N
orange after drawing red \C/ \/

Do the same for orange
You must draw
something at each level.

Multiple-Joint Slider

Needs to control of your
model.

Example: Rotate multiple joints at once
Don't get too complicated!

Wait for Animator in four weeks!

Part 3. gluLookAt

OpenGL's Camera/Eye
Position: The origin
Direction: Looking down the
—Z axXIS
Up Vector: Y-axis
corresponds to “up”

Since we can’t move the

camera, we move the

world instead — it has the
same effect.

A function called

gluLookAt() does this.

You will replace the call to y
gluLookAt() in camera.cpp

with code that does the same

thing.

/

Far plane

(yon)

|

\

Near plane
(hither)

Starting In World Space...

You are given the
camera’s:

Position
Up-vector

Look-at point
Everything is in
world space.
Here's a side view
(looking down —x
axis)

Position B
(X,Y,2) I

+Z

Get Direction

+y
Use the position
and look-at point % T
to get direction bosition Object |
End'hg pOII.Wt - (x,¥,z) Direction I
starting point = (dx,dy,dz)
vector from startto *Z “
end
Normalize it

Line Up Camera With Origin

ty

Apply a translation
to all vertices, so
that the camera’s
center lines up with
the origin.

+Z

Position
(X’ylz) Direction
(dx,dy,dz)

Rotate World to Line Up Vectors

ty

Up vector = +y
Direction = -z
How?

glRotatef() — do the
rotations manually

glMultMatrixf() — +Z

create a custom Position o

rotation matrix (X,Y,2) Direction
(dx,dy,dz)

(preferred)

gluLookAt Notes

See lecture slides for Mat.h has a useful
gluLookAt() matrix class, but you
Make sure you shouldn’t need it.

understand how works

Lots of "magic code” on
the Internet

You might be asked
about it during grading

Part 4. Blinn-Phong Shader

We provide a Files to edit:

directional light shader shader.frag — your

in OpenGL Shading fragment shader
Language (GLSL) shader.vert — your vertex
You must extend it to shader

support point lights.

Compare with the Sample Solution

B | CS5E 457 Modeler

modeler_solution.exe —
in your project folder T
Loads your shader.frag o redonattan
and shader.vert. ‘
In(Specular Exponent)
Also contains our (5=] U |
scene Ambient Light
sample shaders.
Use radio buttons to
. -D 100
compare with sample

[IUse Checkered Texture
Shader To Use

[faTal="
Student Shader
Choose shader here O

(_1Solution Shader

solution

Useful GLSL Variables

gl_LightSource[i].position.xyz — the position

of light source i.

gl_FrontLightProduct[i] — object that stores

the product of a light's properties with the

current surface’s material properties:
Example: gl_FrontLightProduct[i].diffuse ==

gl_FrontMaterial.diffuse *
gl_LightSource[i].diffuse

Part 5. Your Custom Shader

Anything you want!
Can earn extra credit!
Ask TA's for estimated
extra credit value of an
option.

See the OpenGL orange
book in the lab for
details + code.

Can still use sample
solution to test
(depending on
complexity)

Preparing Your Work Environment

Make sure that your repository works by:
Checking it out
Building it
Tweaking something

Committing
Do this on each work environment you plan to

use, even if you aren’t going to start work yet:

Lab machines

Your home computer

The sooner we know of a problem, the sooner we can
fix it.

Avoiding SVN Conflicts

In general, put anything besides source
code into source control:

Debug and Release folders

Modeler.suo

Modeler.ncb

* user files
DO put (*.cpp, *.h, *.vcproj, image
files, etc.) in the repository

Make sure you both add AND commit the files.

TortoiseSVN: when you commit, make sure all the
files you added have a checkmark.

Quick Summary

THINGSTO DO WARNINGS
Partner A: Modeling Don‘t modify any files
Part 1: Rendering a Sphere except your model file and
Part 2: Hierarchical Modeling the required modifications
Either Partner: Or, your model might not
Part 3: gluLookAt() work in Animator
Partner B: Shading Make sure you can check

Part 4: Blinn-Phong Shader out, commit, and build!

Part 5: Custom Shader
You don't have to divide
work up this way!

Before You Leave

Try adjusting the sample model
Let us know if you have problems

Your files in C:\User\... will when you log
out, due to Deep Freeze!

