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Computer Graphics  Instructor: Brian Curless
CSE 457 Spring 2011
 
 
 
 
 
 
 
 
 
 

Homework #2 
 

Hidden Surfaces, Projections, Shading,  
Ray Tracing, and Texture Mapping 

 
 
 
 

 
Assigned: Tuesday, May 10th  

 
Due:   Wednesday, May 18th  

                 at the beginning of class 
 
 
 

 
 
 

Directions: Please provide short written answers to the following questions, using this page as a 
cover sheet.  Be sure to justify your answers when requested.  Feel free to discuss the problems with 
classmates, but please answer the questions on your own. 

 
 

Be sure to write your name on your homework solution.   
You may (optionally) use this page as a cover sheet. 

 
 

 
 
 

Name:_______________________________________________________________ 
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Problem 1.  Z-buffer (9 points) 
 

The z-buffer algorithm can be improved by using an image space “z-pyramid.”  The basic idea of the z-pyramid 
is to use the original z-buffer as the finest level in the pyramid, and then combine four z-values at each level into 
one z-value at the next coarser level by choosing the farthest (most negative) z from the observer.  Every entry 
in the pyramid therefore represents the farthest (most negative) z for a square area of the z-buffer.  In this 
problem, assume the image is always square with side length that is a power of 2.  (Handling non-square, non-
powers-of-2 images is a simple generalization of this.)  Before each primitive is rendered, the z-pyramid is 
updated to reflect the current state of the z-buffer.  When you have a new primitive to draw, you are then testing 
against the current, up-to-date z-pyramid.  A z-pyramid for a single 2x2 image is shown below: 
 
 

 
a) (2 points) At the coarsest level of the z-pyramid 

there is just a single z value.  What does that z 
value represent? 

 
 
 
 
 
Suppose we wish to test the visibility of a triangle T.  Let zT be the nearest z value of triangle T.  R is a region 
on the screen that encloses the triangle T, and is the smallest region of the z-pyramid that does so.  Let zR be 
the z value that is associated with region R in the z-pyramid. 
 
 

 
b) (2 points) What can we conclude if zR < zT? 
 
c) (2 points) What can we conclude if zT < zR? 

 
 
 
 
 
 

If the visibility test is inconclusive, then the algorithm applies the same test recursively: it goes to the next 
finer level of the pyramid, where the region R is divided into four quadrants, and attempts to prove that 
triangle T is hidden in each of the quadrants of R that T intersects.  Since it is expensive to compute the closest 
z value of T within each quadrant, the algorithm just uses the same zT (the nearest z of the entire triangle) in 
making the comparison in every quadrant.  If, at the bottom of the pyramid, the test is still inconclusive, the 
algorithm resorts to ordinary z-buffered rasterization to resolve visibility. 
 

d) (3 points) Suppose that, instead of using the above algorithm, we decided to go to the expense of 
computing the closest z value of T within each quadrant.  Finding the closest value amounts to 
clipping the triangle to each region and analytically solving for the closest z.  This approach also 
applies to the finest level of the pyramid, where the pixels are abutting square regions.   Would it then 
be possible to always make a definitive conclusion about the visibility of T within each pixel, without 
resorting to rasterization (effectively intersecting the viewing ray with the triangle)?  Why or why not? 

-
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Problem 2. Projections (11 points) 
 
Imagine there is a pinhole camera located at the origin, COP1, that is looking in the –z direction.  The projection 

plane (PP) is the plane z = zP (note zP is a negative number), so that the distance from COP1 to PP is d = -zP, as 
shown in the figure below.  Let there be two points in the scene, P = [0 yP zP 1]T and Q = [0 yP 2zP 1]T. 
 

 
 
The projection matrix for this camera is 
 

1 0 0 0

0 1 0 0

0 0 1/ 0pz

 
 
 
  

 

 
This projects P to the point [0 yP 1]T and Q to the point [0 ½yP 1]T. 
 

a) (3 points) Now, assume that the camera has moved to COP2 (shown above) at [0 0 -2zP 1]T.  Assume 
PP stays at z = zP.  Derive the new projection matrix that maps points onto PP.  Show your work. 

 
b) (2 points) If your matrix in part a) is correct, point P should project to the same image point as before.  

Calculate the projection of point Q.  How did the projection of point Q change when the camera 
moved from COP1 to COP2?   

 
c) (4 points) Suppose we want to keep the projection of Q constant at [0 ½yP 1]T.  Suppose the center of 

projection is at COP = [0 0 zCOP 1]T.  To keep the projection of Q constant, we will need to vary the z-
coordinate of PP; let the updated PP be z = pz .  Solve for pz needed to keep Q’s projection constant as 

zCOP varies.  Show your work.  Note that the z-coordinate of Q is fixed at 2zP, but the z-coordinate of PP is 
now a variable, pz . 

 
d) (2 points) Now consider moving the COP infinitely far back along the positive z-axis while keeping PP at 

its original location, z = zP.  Derive the new projection matrix for this case.  Show your work.  What is this 
sort of projection called? 

 

zP 

zP

yP 

P

Q 
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Problem 3.  Ray intersection with implicit surfaces (25 points) 
 
There are many ways to represent a surface.  One way is to define a function of the form 0),,( zyxf .  Such a 

function is called an implicit surface representation.  For example, the equation 0),,( 2222  rzyxzyxf  
defines a sphere of radius r.  Suppose we wanted to ray trace a “quartic chair,” described by the equation: 
 

2 2 2 2 2 2 2 2 2( ) ( ) 2 ( ) 2 0x y z ak b z k x z k y                

 
On the left is a picture of a quartic chair, and on the right is a slice through the y-z plane. 
 

                  

z

y

z

y

 
 
For this problem, we will assume a = 0.95, b = 0.8, and k = 5. 

 
In the next problem steps, you will be asked to solve for and/or discuss ray intersections with this primitive.  
Performing the ray intersections will amount to solving for the roots of a polynomial, much as it did for sphere 
intersection.  For your answers, you need to keep a few things in mind: 
 

 You will find as many roots as the order (largest exponent) of the polynomial. 
 
 You may find a mixture of real and complex roots.  When we say complex here, we mean a number that has a 

non-zero imaginary component. 
 
 All complex roots occur in complex conjugate pairs.  If A + iB is a root, then so is A – iB. 
 
 Sometimes a real root will appear more than once, i.e., has multiplicity > 1.  Consider the case of sphere 

intersection, which we solve by computing the roots of a quadratic equation. A ray that intersects the sphere 
will usually have two distinct roots (each has multiplicity = 1) where the ray enters and leaves the sphere.  If 
we were to take such a ray and translate it away from the center of the sphere, those roots get closer and closer 
together, until they merge into one root.  They merge when the ray is tangent to the sphere.  The result is one 
distinct real root with multiplicity = 2. 

 

a) (10 points) Consider the ray dtP  , where  000P  and  0 0 1d .  Solve for all values of t 

where the ray intersects the quartic chair (including negative values of t).  Which value of t represents the 
intersection we care about for ray tracing?  In the process of solving for t, you will be computing the roots of a 
polynomial.  How many distinct real roots do you find?  How many of them have multiplicity > 1?  How many 
complex roots do you find? 
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Problem 3 (cont’d)   
 

b) (15 points) What are all the possible combinations of roots, not counting the one in part (a)?  For each 
combination, describe the 4 roots as in part (a), draw a ray in the y-z plane that gives rise to that combination, 
and place a dot at each intersection point. There are five diagrams below that have not been filled in.  You may 
not need all five; on the other hand, if you can actually think of more distinct cases than spaces provided, then 
we might just give extra credit.  The first one has already been filled in.  (Note: not all conceivable 
combinations can be achieved on this particular implicit surface.  For example, there is no ray that will give a 
root with multiplicity 4.)  Please write on this page and include it with your homework solution. You do not 
need to justify your answers.   

 
 
 

              
 
   # of distinct real roots:  4                   # of distinct real roots:            # of distinct real roots: 
 
   # of real roots w/ multiplicity > 1:  0         # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 
 
   # of complex roots:   0            # of complex roots:            # of complex roots: 
 
 
 
 
 

              
  
   # of distinct real roots:                     # of distinct real roots:            # of distinct real roots: 
 
   # of real roots w/ multiplicity > 1:           # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 
 
   # of complex roots:             # of complex roots:            # of complex roots: 
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Problem 4.  Counting rays (25 points) 
 
In this problem, we study the number of rays traced for using different ray tracing algorithms.  Consider the 
following setup: 
 

m x m pixels 
k x k supersampling 
n geometric primitives 
 light sources 
d bounces (reflections and/or refractions) 

 
For each of the algorithms and scenarios discussed in parts (a)-(e) below, assume the following: 
 

 You are counting rays cast, including primary rays, shadow (light) rays, reflected rays, and (when asked 
for in the problem) refracted rays. 

 No acceleration techniques are used. 
 Every recursively traced (reflected or refracted) ray hits an object, including the primary rays. 
 You will always cast a ray to the light source after intersecting an object, and this does not count as a 

recursive “bounce” (but certainly counts as a cast ray). 
 Each ray cast to a light source counts as a single ray-cast, even when accounting for transparent shadows.  

(The transparent shadow case can be handled by keeping track of all intersections encountered – not just 
the closest – when casting a ray to a light, so this is a reasonable assumption.) 

 
Explain your steps in arriving at answers to the questions below.  For each sub-problem, in some cases, you can 
write out a closed form solution directly, but you must explain your reasoning.  In other cases, you might need 
to write out a summation (with the  symbol for the summation); if possible, convert the summation to a closed 
form answer.   
 
a) (5 points) For Whitted ray tracing, assuming reflection (but no refraction) at every surface, how many rays 

are cast? 
 
b) (5 points) For Whitted ray tracing, assuming reflection and refraction at every surface, how many rays are 

cast? 
 
c) (5 points) Suppose now, in order to get glossy reflections, you recursively cast k x k rays around the 

reflection direction at each bounce.  Assuming glossy reflection (but no refraction) at every surface, how 
many rays are cast? 

 
d) (5 points) In addition, in order to get translucent (blurry) refraction effects, you recursively cast k x k rays 

around the refraction direction at each bounce.  Assuming glossy reflection and translucent refraction at 
every surface, how many rays are cast? 

 
e) (5 points) Suppose now you switch to using distribution ray tracing.  Assuming glossy reflection and 

translucent refraction at every surface, how many rays are cast? 
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Problem 5.  Shading, displacement mapping, and normal mapping (30 points) 
 

In this problem, an opaque surface will be illuminated by one directional light source and will reflect light 
according to the following Phong shading equation: 
 

     
   shadow d s

sn
I A L k k BN L V R  

 
Note the inclusion of a shadowing term, which takes on a value of 0 or 1.  For simplicity, we will assume a 

monochrome world where I, L, kd, and ks are scalar values. 
 
Suppose a viewer is looking down at an infinite plane (the x-y plane) as illustrated below.  The scene is 
illuminated by a directional light source, also pointing straight down on the scene. 
 

 
 
Answer the following questions below, giving brief justifications of each answer.  Note that lighting and 
viewing directions are from the point of view of the light and viewer, respectively, and need to be negated 
when considering the surface-centric shading equation above.  [In general, you don't need to solve equations 
and precisely plot functions.  It is enough to describe the variables involved, how they relate to each other, and 
how this relationship will determine, e.g., the appearance of the surface.  If you're more comfortable making 
the answers analytical with equations and plots, however, you are welcome to do so.] 

 
a) (2 points) Assume: Perspective viewer at (0,0,1) looking in the (0,0,-1) direction, angular field of view of 

90 degrees, lighting direction of (0,0,-1), kd = 0.5, ks = 0.  Describe the brightness variation over the image 
seen by the viewer.  Justify your answer. 

 
b) (2 points) Assume: Perspective viewer at (0,0,1) looking in the (0,0,-1) direction, , angular field of view of 

90 degrees, lighting direction of (0,0,-1), kd = 0.5, ks = 0.5, ns = 10. Describe the brightness variation over 
the image seen by the viewer.  Justify your answer. 

 

c) (2 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd = 

0.5, ks = 0.5, ns = 10.  Describe the brightness variation over the image seen by the viewer.  Justify your 
answer. 

 

d) (3 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd = 0.5, ks = 0.  The lighting 
direction starts at (-sqrt(2)/2 ,0, -sqrt(2)/2) and then rotates around the z-axis.  Describe the brightness 
variation over time, as seen by the viewer. Justify your answer. 



 8

Problem 3. (cont’d) 
 

e) (3 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd = 0.5, ks = 0.5, ns = 10. The 
lighting direction starts at (-sqrt(2)/2 ,0, -sqrt(2)/2) and then rotates around the z-axis.  Describe the 
brightness variation over time, as seen by the viewer. Justify your answer. 

 
 
Suppose now the infinite plane is replaced with a surface z = cos(x): 
 

 
 
We can think of this as simply adding a displacement d=cos(x) in the normal direction to the x-y plane.   

 

f) (5 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd = 

0.5, ks = 0.  At what values of x is the surface brightest?  At what values is it dimmest?  Describe the 
appearance of the surface.  Justify your answers. 
 

g) (5 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd 

=0, ks =0.5, ns =10.  At what values of x is the surface brightest?  Describe the appearance of the surface.  

How does the appearance change as ns increases to 100?  Justify your answers. 
 

 
Suppose now that we simply keep the normals used in (f)-(g) and map them over the plane from the first part 
of the problem.  The geometry will be flat, but the shading will be based on the varying normals.  

 

h) (5 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd =0.5, ks =0.  If we define the 
lighting to have direction (-sin, 0, -cos), will the normal mapped rendering look the same as the 
displacement mapped rendering for each of = 0, 10, and 80 degrees?  Justify your answer. 
 

i) (3 points) Assume: Orthographic viewer, lighting direction of (0,0,-1), kd =0.5, ks =0.  As we generally 
move the viewer around – rotating it to various viewing direcitons – will the normal mapped rendering 
look the same as the displacement mapped rendering?  Justify your answer. 

 
 


