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Reading

Optional

 Angel readings for “Parametric Curves” lecture, 
with emphasis on 12.1.2, 12.1.3, 12.1.5, 12.6.2, 
12.7.3, 12.9.4.

 Bartels, Beatty, and Barsky.  An Introduction to 
Splines for use in Computer Graphics and 
Geometric Modeling, 1987.
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Mathematical surface representations

 Explicit   z= (x,y)  (a.k.a., a “height field”)
• what if the curve isn’t a function, like a sphere?

 Implicit   ( , ) = 0

 Parametric   S(u,v x u,v y u,v),z(u,v))
• For the sphere:

x(u,v) = r 2v sin u

y(u,v) = sin 2 sin 
z(u,v) = cos 

As with curves, we’ll focus on parametric surfaces.
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Surfaces of revolution

Idea:  rotate a 2D profile curve

What kinds of shapes can you model this way?
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Constructing surfaces of revolution

Given: -plane:

Let Ry ) be a rotation about the y-axis.

Find:
-axis.

Solution:
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Isoparameter curves and tangents

We can follow curves where v is constant, and u
varies or vice versa.  These are called isoparameter
curves (where one parameter is held constant):

If we sample at equal spacing in and , we can 
create a quadrilateral mesh (or a triangle mesh).

We can compute tangents to the surface at any point 
by looking at (infintesimally) nearby points.  

Holding one parameter constant, we can find nearby 
points by varying the other parameter.  Thus, we can 
get two tangents:

How would we compute the normal?
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General sweep surfaces

The surface of revolution is a special case of a 
swept surface

profile 
C(u) along a trajectory curve T v

More specifically:

 Suppose that ( ) lies in an ( c yc

system with origin Oc

 For every point along ( ), lay ( ) so that 
coincides with T(v).
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The big issue:

 How to orient C(u) as it moves along T(v)?

Here are two options:

1.  Fixed static):  Just translate along ( ).

2.  Moving.  Use the of ( ).

 Allows smoothly varying orientation.

 Permits surfaces of revolution, for example.

Orientation
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Frenet frames

Motivation:  Given a curve ( ), we want to attach a 
smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 
independent direction vectors.

As we move along T(v), the Frenet frame (t,b n
smoothly.
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Tangent:    ( ) normalize[ ( )]

Binormal:   ( ) normalize[ ( ) ( )]

Normal:      ( ) ( ) ( )
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Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame 
of the trajectory ( ):

 Put ( ) in the normal plane .

 Place Oc on T(v).

 Align for ( ) with b

 Align for ( ) with -n.

If T(v) is a circle, you get a surface of revolution 
exactly!
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Degenerate frames

Let’s look back at where we computed the 
coordinate frames from curve derivatives:

Where might these frames be ambiguous or 
undetermined?
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Variations

Several variations are possible:

 Scale C(u) as it moves, possibly using length of 
T(v) as a scale factor.

 Morph ( ) into some other curve as it 
moves along T(v).

 …

( )C u
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Tensor product Bézier surfaces

Given a grid of control points Vij

construct a surface S(u,v) by:

 treating rows of V (the matrix consisting of the Vij) 
as control points for curves V0 u Vn u

 treating V0(u),…, Vn(u) as control points for a curve 
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Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Which control points are interpolated by the surface?

15

Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of 
the Bernstein polynomials:

A tensor product Bézier surface can be written as:

In the previous slide, we constructed curves along u, and 
then along v.  This corresponds to re-grouping the terms 
like so:

But, we could have constructed them along v, then u:
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Tensor product B-spline surfaces

As with spline curves, we can piece together a 
sequence of Bézier surfaces to make a spline surface.  
If we enforce C2 continuity and local control, we get 
B-spline curves:

 treat rows of B
Bézier control points in u

 treat Bézier control points in u as B-spline
control points in v

 treat B-spline control points in v to generate 
Bézier control points in u.
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Tensor product B-spline surfaces, cont.

Which B-spline control points are interpolated by the 
surface?
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Tensor product B-splines, cont.

Another example:

B00

B33

B30

B03
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NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS 
surfaces.
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Trimmed NURBS surfaces

Sometimes, we want to have control over which parts 
of a NURBS surface get drawn.

For example:

We can do this by trimming -v

 trim 
curve

 Do not draw the surface points inside of this 
curve.

It’s really hard to maintain continuity in these regions, 
especially while animating.
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Summary

What to take home:

 How to construct a surface of revolution

 How to construct swept surfaces from a profile 
and trajectory curve:

• with a fixed frame

• with a Frenet frame

 How to construct tensor product Bézier surfaces

 How to construct tensor product B-spline
surfaces


