Color

Daniel Leventhal
Adapted from Andy van Dam (Brown)
CSE 457
Autumn 2011

High Level Points

- Color is perceptual; spectral distributions are physical
- Elementary school was a simplification
- The eye is logarithmic

Spectrum and Color

- Physical Mixture of wavelengths
- Perception Color

380nm/violet - 740nm/red

Dynamic Range

- Ratio of maximum to minimum light intensities
- Eye overall 109:1
 - Adaptation by changing pupil size
 - 10,000:1 at any moment

[Dynamic range not the same as gamut]

Perceived Brightness

- Relationship between perceived brightness S and intensity I is non-linear
- S = C * log(I)
- Efficiently use 256 intensity values

$$\frac{I_{j+1}}{I_j} = \frac{I_j}{I_{j-1}} = r$$

$$I_0 = I_0$$
 $I_1 = rI_0$... $I_{255} = r^{255}I_0$
$$r = \left(\frac{1}{I_0}\right)^{\frac{1}{255}}$$

Power Law

- Log function based on subjective human judgments
- Stevens' power law approximates the log well S = c * I^{0.4}

Screen Non-linearity: Gamma

- $I = k \bullet V^{\gamma}$
- Mac gamma: 1.8, PC: 2.5

Mac user generates image

PC user changes image to make it

PC user gives image back; it's now too bright

One receptor response curve $f(\lambda)$ λ $f(\lambda)$ λ Response of receptor: $\int_{400nm}^{700nm} I(\lambda)f(\lambda) \, \mathrm{d}x$ Both frequency distributions produce the same response

Metamers

• Consider a creature with two receptors (R1, R2)

- Both I₁ and I₂ produce the same response in R₁ and R₂
- In principle an infinite number of frequency distributions can produce the same response.

Three Layers of Preception

- Receptors in retina
 - Rods, three types of cones (tristimulus theory)
 - Note: receptors each respond to wide range of frequencies, not just RGB
- Opponent channels
 - Blue-yellow, red-green, black-white
- Opponent cells
 - Spatial (context) effects, e.g., simultaneous contrast, lateral inhibition

Rods

- See grays
- Work in low light
- Around periphery of retina

Hering's Chromatic Opponent Channels

- Additional processing
 - Cones feed into higher up neurons that correspond to opponent processes: red-green and yellow-blue
 - A color is never reddish-greenish or bluish-yellowish

Describing Color

- Talked about intensity
- Hue: Which color
- Saturation: How pure the color is

- Distinguish between around 7 million colors
 - Determined by Just Noticeable Differences (JND)
 - JND smaller near center of visible range of light
- Three terms implies 3 dimensional space

Naming Color

- How do you compare colors?
- PANTONE® Matching System in printing industry
- Munsell color-order system
 - hue, value/lightness, chroma (saturation)
 - equal perceived distances between neighbors

Color Matching

- Need a way to precisely describe colors
- Choose three primaries (RGB), try and match T

Color Matching

- Three primaries can't match all colors
- Adding a light to the test side lets you match all colors
- Can be thought of as -R

CIE Color Space

· Negative primary is awkward

- X, Y, Z replace red, green blue
- Y chosen so that y_λ matches luminous efficiency function

The mathematical color matching functions $x_\lambda y_\nu$, and z_λ for the 1931 CIE X, Y, and Z primaries. They are defined tabularly at 1 nm intervals for color samples that subtend 2° field of view on retina

RGB in CIE

Easily convert RGB <-> XYZ

 $\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.412453 & 0.357520 & 0.180423 \\ 0.212671 & 0.715160 & 0.072169 \\ 0.019334 & 0.119193 & 0.950227 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$

• Visible gamut has irregular shape in CIE based on response curves

RGB cube (right) distorted from projection

Color Spaces

- Programming for monitors easier in space defined by monitor: RGB space (RGB pixels for both CRT's and flat panels)
- Printers use CMY (cyan, magenta, yellow) for color printing: CMY(K) space
- Six-primary-color projection system: 6-color IRODORI space
- User-friendliness: Hue, Saturation, Value is easier than RGB
- · Need perceptual uniformity in the space? Munsell or CIELab

CMYK

- Used in most printers
 - Color ink is expensive, mix of inks dries slower
- Cyan, magenta, and yellow are complements of red, green, and blue
- Subtractive primaries: Color subtracted from white
 - White is at origin, black at (1, 1, 1):

Subset is unit cube

K = min(C, M, Y)

HSV

- Hue, saturation, value (kind of brightness)
- Polar coordinates

HLS

- Hue, lightness, saturation
- Easier to think of white as a point
- Maximally saturated hues at S=1, L = 0.5

Perceptual Uniformity

- Equal changes in color values are not perceived as equal (RGB, CMYK, HSV, HLS)
- CIE Lab introduced in 1976
 - L: luminosity
 - a: red/green axis
 - b: yellow/blue axis
- Color space dependent on white value

Interpolating Colors

• RGB is easy

red = (1, 0, 0), green = (0, 1, 0) midpoint = (0.5, 0.5, 0) RGB_to_HSV = (60°, 1, 0.5)

HSV is less obvious

red = (0º, 1, 1); green = (120º, 1, 1) midpoint = (60º, 1, 1)

Quick UI Implications

- 1 in 10 men are color blind
 - Mostly: Red / Green
 - Rare: Yellow / Blue
 - Very Rare: No color
- Test UIs for color blind (approximation)
 - http://colorfilter.wickline.org/