

Reading

Optional reading:

- Angel 4.1, 4.6-4.10
- Angel, the rest of Chapter 4
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, $2^{\text {nd }}$ Ed., McGraw-Hill, New York, 1990, Chapter 2.

Vector representation

We can represent a point, $p=(x, y)$, in the plane or $p=(x, y, z)$ in 3D space

- as column vectors

- as row vectors

$\left[\begin{array}{lll}x & y & z\end{array}\right]$

6

Canonical axes

Vector length and dot products

Inverse \& Transpose

10

Two-dimensional transformations

Here's all you get with a 2×2 transformation matrix M :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

So:

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

We will develop some intimacy with the elements $a, b, c, d \ldots$

Identity

Suppose we choose $a=d=1, b=c=0$:

- Gives the identity matrix:

- Doesn't move the points at all
\qquad

Scaling

Suppose we set $b=c=0$, but let a and d take on any positive value:

- Gives a scaling matrix:
$\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$
- Provides differential (non-uniform) scaling in x and y :
 $y^{\prime}=d y$

14

Now let's leave $a=d=1$ and experiment with $b . .$. .

The matrix

$$
\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]
$$

gives:

$$
\begin{aligned}
& x^{\prime}=x+b y \\
& y^{\prime}=y
\end{aligned}
$$

$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

16

Effect on unit square

Let's see how a general 2×2 transformation M affects the unit square:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
\mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{~s}
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{p}^{\prime} & q^{\prime} & \mathrm{r}^{\prime} & \mathrm{s}^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & a & a+b & b \\
0 & c & c+d & d
\end{array}\right]}
\end{aligned}
$$

17 \qquad

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Limitations of the 2×2 matrix

A 2×2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?
$\cdot\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow$

- $\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow$

Thus,

19

Homogeneous coordinates

We can loft the problem up into 3-space, adding a third component to every point:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Adding the third " w " component puts us in homogenous coordinates.

Then, transform with a 3×3 matrix:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=T(\mathrm{t})\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

. . . gives translation!

Affine transformations

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations always look like this:

$$
M=\left[\begin{array}{lll}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\left.\begin{array}{c|c}
A & \mathrm{t} \\
\hline 0 & 0
\end{array} \right\rvert\,\right.
$$

2D affine transformations always have a bottom row of [llll 0011$]$.

An "affine point" is a "linear point" with an added w-coordinate which is always 1 :

$$
\mathrm{p}_{\mathrm{aff}}=\left[\begin{array}{c}
\mathrm{p}_{\mathrm{lin}} \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Applying an affine transformation gives another affine point:

22

Rotation about arbitrary points

Until now, we have only considered rotation about the origin

With homogeneous coordinates, you can specify a rotation, θ, about any point $\mathbf{q}=\left[q_{x} q_{y}{ }^{1}\right]^{\top}$ with a matrix:

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back

Note: Transformation order is important!!

Points and vectors

Vectors have an additional coordinate of $w=0$. Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine matrix?

These representations reflect some of the rules of affine operations on points and vectors:

$$
\begin{array}{cl}
\text { vector }+ \text { vector } & \rightarrow \\
\text { scalar } \cdot \text { vector } & \rightarrow \\
\text { point - point } & \rightarrow \\
\text { point + vector } & \rightarrow \\
\text { point + point } & \rightarrow
\end{array}
$$

One useful combination of affine operations is:

$$
\mathrm{p}(t)=\mathrm{p}_{o}+t \mathrm{tu}
$$

Q: What does this describe?

Basic 3-D transformations:

scaling
Some of the 3-D affine transformations are just like the 2-D ones.

In this case, the bottom row is always $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$.
For example, scaling:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

25

Rotation in 3D

Rotation now has more possibilities in 3D:

A general rotation can be specified in terms of a prodcut of these three matrices. How else might you specify a rotation?

Translation in 3D

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

We call this a shear with respect to the $x-z$ plane.

28

Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

$$
\text { ratio }=\frac{\|p \mathrm{pq}\|}{\left\|q r^{\|}\right\|}=\frac{s}{t}=\frac{\left\|\mathrm{p}^{\prime} \mathrm{q}^{\prime}\right\|}{\left\|\mathrm{q}^{\prime} \mathrm{r}^{\prime}\right\|}
$$

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation M.

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

$$
\begin{aligned}
& \text { • glLoadIdentity() } \mathbf{M} \leftarrow \mathbf{I} \\
& \text { - set } \mathbf{M} \text { to identity } \\
& \text { - glTranslatef }\left(t_{x}, t_{y}, t_{z}\right) \quad \mathbf{M} \leftarrow \mathbf{M T} \\
& \text { - translate by }\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}\right) \\
& \text { - glRotatef }(\theta, \mathrm{x}, \mathrm{y}, \mathrm{z}) \quad \mathbf{M} \leftarrow \mathbf{M R} \\
& \text { - rotate by angle } \theta \text { about axis (} x, y, z \text {) } \\
& \text { - glScalef }\left(s_{x}, s_{y}, s_{z}\right) \quad \mathbf{M} \leftarrow \mathbf{M S} \\
& \text { - scale by (} \mathrm{s}_{\mathrm{x}}, \mathrm{~s}_{\mathrm{y}}, \mathrm{~s}_{\mathrm{z}} \text {) }
\end{aligned}
$$

Note that OpenGL adds transformations by postmultiplication of the modelview matrix.

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2×2 transformation matrix do and how these generalize to 3×3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.

