
Ray Tracer

Spring 2008 Help Session

Outline

• Project Web Resources

• What do you have to do for this project?

• Ray Class

• Isect Class

• Requirements

• Tricks

• Artifact Requirement

• Bells and Whistles

Project Web Page

• Roadmap

– Overview of files

– STL Information

• List of useful equations

• File format description

• Debugging display documentation

• Triangle intersection handout

http://www.cs.washington.edu/education/courses/cse457/CurrentQtr/projects/trace/

http://www.cs.washington.edu/education/courses/cse457/05au/projects/trace/
http://www.cs.washington.edu/education/courses/cse457/CurrentQtr/projects/trace/

Welcome to the Raytracer Project

• Basically, you are given a raytracer;

and you have to implement:

– Shading (has multiple parts)

– Sphere Intersection Code

– The ability to intersect triangles

• Complex objects consist of a 3D mesh made up of

many of these triangles

– Reflection and Refraction

ray Class

• A 3D ray is the fundamental component of a

raytracer.

• ray r (start position, direction, RayType)
– enum RayType{VISIBILITY, REFLECTION, REFRACTION, SHADOW};

– example: ray r(foo, bar, ray::SHADOW);

• r.at(t), a method that determines the position of

the ray r as a function of t, the distance from the

start position (t*direction vector)
– r.at(t) => where the end of the ray points at (a distance t away from the

start point)

r.at(t)

Start

position

Dot Product & Cross Product

• DotProduct and CrossProduct are

provided by vec.h

– * - dotproduct

• (e.g. double dot = v1 * v2;)

– ^ - crossproduct

• (e.g. Vec3d cross = v1 ^ v2;)

isect Class

• An isect represents the location where a ray
intersects a specific object.

• Important member variables:

const SceneObject *obj; // the object that was intersected.

double t; // the distance along the ray where it occurred.

Vec3d N; // the normal to the surface where it occurred

Vec2d uvCoordinates; // texture coordinates on the surface. [1.0,1.0]

Material *material; // non-NULL if exists a unique material for this intersect.

const Material &getMaterial() const; // return the material to use

• This data structure is used to record the details
of a ray’s intersection with an object. (Filled-out
in an object’s intersection routine)

Requirements

Sphere Intersection
Fill in Sphere::intersectLocal in

SceneObjects\Sphere.cpp:

Return true if ray r intersects the canonical sphere

(sphere centered at the origin with radius 1.0) in

positive time.

Set the values of isect i:
• i.obj = this

• i.setT(time of intersection)

• i.setN(normal at intersection).

Requirements

Triangle Intersection
Fill in TrimeshFace::intersectLocal in

SceneObjects\trimesh.cpp:

Intersect r with the triangle abc:

Vec3d &a = parent->vertices[ids [0]];

Vec3d &b = parent->vertices[ids [1]];

Vec3d &c = parent->vertices[ids [2]];

Set up isect i as in the sphere intersection and return true if
ray r intersects the plane containing triangle abc and the
intersection is within the triangle.

See

http://www.cs.washington.edu/education/courses/457/CurrentQtr/projects/trace/extra/triangle_intersection.pdf

http://www.cs.washington.edu/education/courses/457/CurrentQtr/projects/trace/extra/triangle_intersection.pdf

Requirements

Blinn-Phong specular-reflection model
Fill in Material::shade in material.cpp:

Refer to the raytracing lecture:
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

To sum over the light sources, use an iterator as

described in the comments of the code.

Remember, if you are inside an object, the object’s

normal will point outside. You will need to flip that

normal for any shading, reflection, or refraction.
(Unless of course you like funky images and less points…)

http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

Requirements

Contribution from multiple light sources
Fill in PointLight::distanceAttenuation in light.cpp

(DirectionalLight::distanceAttenuation is already

done for you). Use the alternative described in

the ray-tracing lecture where

a = constantTerm

b = linearTerm

c = quadraticTerm

These terms are defined in light.h.

Requirements

Shadow Attenuation
Fill in DirectionalLight::shadowAttenuation and PointLight::shadowAttenuation

in light.cpp.

The ray-tracing lecture shows you where to insert this factor into the Blinn-
Phong equation (A_shadow for each light).

Rather than simply setting the attenuation to 0 if an object blocks the light,
accumulate the product of k_t’s for objects which block the light (use the
prod function from the vector package). Count each intersection with an
object by the shadow ray (which may include entering and exiting).

See Foley, et. al. Section 16.12 in course reader – this particular method is not
really covered in lecture slides

Better ways to handle shadows (caustics, global illumination, etc.) get extra
credit

Here’s a link to the ray-tracing lecture:
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

Requirements

Reflection
Modify RayTracer::traceRay in RayTracer.cpp to

implement recursive ray tracing which takes into

account reflected rays.

See Foley, et. al. and lecture slides.

Requirements

Refraction
Modify RayTracer::traceRay in RayTracer.cpp to

implement recursive ray tracing which takes into

account refracted rays.
Remember Snell’s law, watch out for total internal refraction, and

consider the case when the ray is exiting a material into air (think

about the direction of the normal)

You can test with simple/cube_transparent.ray

Warning: Unlike reflection, this routine has several cases to consider: an incoming ray, an

outgoing ray and a totally internally refracted ray.
nglass=1.5

1

2

2

1

nair=1.0003

Tricks

• Use the sign of the dot product

r.getDirection() with i.N to determine

whether you’re entering or exiting an

object

• Use RAY_EPSILON (which is defined as

0.00001) to account for computer precision error

when checking for intersections (dark scattered dots

appearing on objects)
RAY_EPSILON

Artifact Requirements

• One JPEG/PNG image per person traced with

your Ray Tracer submitted for voting.

• Has to be a (somewhat) original scene

• For each image submitted for voting, a short .txt

description of the scene or special features.

• Examples of each bell/whistle implemented with

an accompanying readme.txt specifying which

image demonstrates which feature (and

where/how).

Bells and Whistles

• Antialiasing – A must for nice scenes (to render scenes
without “jaggies”)

• Interpolate trimesh material properties – will make them
look nicer

• Environment/Texture/Bump Mapping – Relatively easy
ways to create complex, compelling scenes

• Single Image Random Dot Stereograms – I have no
idea, but they look cool!

• Depth of field, Soft shadows, Motion blur, Glossy
reflection – most images we’re used to have at least one
of these effects

3D and 4D Fractals

http://www.cs.washington.edu/education/courses/cse457/04sp/projects/trace/vote/omicron-tortman/omicron-tortman2.txt

Constructive Solid Geometry

• Allows for complex objects while still just intersecting simple primitives

