
Modeler Help
Session
CSE 457, Autumn 2008
Modeler Due: Tuesday, November 3rd

Modeler Artifact Due: Friday, October 30th

Project TA: Travis Veralrud

Help Session Overview

 The Modeler Application
 Modeler Code Overview
 Constructing Your Model
 Hierarchical Modeling in OpenGL
 Warnings & Hints
 Example Models
 Summary

The Modeler Application

 Two main windows:
Control window with sliders
Model view window

 To navigate in the model view window:
Left-click: Rotate the camera
Middle-click: Move the point that the camera

is looking at (Translation/Dolly)
Right-click: Zoom in/out

Modeler Code Overview

 modelerapp.* and modelerui.* handles the
user interface

 modelerapp.h defines the
ModelerApplication class which handles
the setting of control values

 modelerdraw.* supports the drawing of
primitive shapes and material attributes

Modeler Code Overview

 modelerview.h
defines the ModelerView object
base class of your model – your model will be

a subclass of ModelerView
handles OpenGL drawing and event handling

 modelerview.cpp
provides some base functionality such as

setting up lighting and handling camera
controls

Modeler Code Overview

 DO NOT TOUCH THE FOLLOWING FILES:
 modelerapp.*
 modelerui.*
 modelerdraw.*
 modelerview.*

 For the animator project, you will be re-using
your model source file and plugging it into a
different application. If you change modelerapp.*
or modelerdraw.*, your model may not work with
the animator project!

Modeler Code Overview
What DO you get to change?

 Camera.*
 Controls camera functions
 Look in camera.cpp to implement your own version of

gluLookAt()

 Sample.cpp
 Example BoxModel - you will replace this with your

own model file
 To start: copy sample code and then modify in order

to include the methods you need.
 Eventually remove sample.cpp file and replace with

<YourModel>.cpp

Modeler Code Overview

Some helpful files (that you should also not
change)

 Modelerui.fl is a data file that controls the
FLTK user interface

 Vec.h & Mat.h contains useful
vector/matrix operations

Constructing Your Model

 Make all changes in Sample.cpp
Draw() function is where you will build your

model
Main() function initializes the controls

 Add slider controls

Enum statement at the top of the file defines
the names and number of controls
 Add controls both to Enum and main
 Remember to keep NUMCONTROLS variable at

the end of the Enum list

Hierarchical Modeling
in OpenGL
 OpenGL is a state machine

 glEnable()/glDisable() changes the state
 Once you change something, it will stay that way until

you change it to something new!
 This includes: current color, transformation details,

drawing modes, information about the lights, etc.

 OpenGL maintains a transformation matrix that
is applied to everything that is drawn
 In other words: transformations are cumulative
 Perform transformations glRotated(), glTranslated(),

glScaled() relative to the previous drawn object

Hierarchical Modeling
in OpenGL
How do we get back to an earlier

transformation matrix?

 glPushMatrix() & glPopMatrix()
Keeps track of the state of your model in a

stack
 If you want to make changes and then undo

the transformation matrix, glPushMatrix() will
keep track of where everything was

When popped off the stack, will return to
those values

Warnings & Hints

 Keep track of your pushes() and pops() – having
unmatched pushes and pops can cause a lot of
grief!
 It can help to divide the draw routine into a series

of nested methods, each with their own push and
pop.

 Implementing gluLookAt(): Look in your slides and
in the OpenGL Blue Book, but make sure you
understand how it works!

 Implementing the animation sequence: have a
slider control multiple aspects of the model

Warnings & Hints

Worthwhile bells & whistles that will help you
out down the road:

 Cool lighting/camera effects

 Smooth curve functionality/swept surfaces

Warnings & Hints

Texturing mapping FAQ:

 Look in the OpenGL Programming Guide
to see how to set up texture mapping

 Use the load function in imageio.cpp to
load a JPEG or PNG to use as a texture
map

Example Models

Looking for inspiration?
 Example models can be found on previous quarters’

websites
 A short list of sample executables available at:

http://www.cs.washington.edu/education/courses/cse457/CurrentQtr/projects/modeler/newdoc/demos/

 A quarter of very impressive models:
http://www.cs.washington.edu/education/courses/cse457/02au/projects/modeler/vote/winners/

 More links on the project page

http://www.cs.washington.edu/education/courses/cse457/CurrentQtr/projects/modeler/newdoc/demos/
http://www.cs.washington.edu/education/courses/cse457/02au/projects/modeler/vote/winners/

Avoiding SVN conflicts
 In general, never put automatically

generated binaries into source control
modeler.suo, modeler.ncb, Debug*, Release\

*
Avoid *.user files too

 These binaries will cause a conflict at
practically every commit when both people
are working on the project
http://svnbook.red-bean.com/
TortiseSVN: http://tortoisesvn.tigris.org/

http://svnbook.red-bean.com/
http://tortoisesvn.tigris.org/

Save your files!

 DO put source files (*.cpp, *.h, *.sln,
*.vcproj), image files, etc. in the repository
 If you create any new files remember to both

add AND commit the files to avoid loss

 Work from the ThawSpace drive (typically
“Z:”) on the lab computers

Test the Source Control Early

 The only way we can fix problems is if we
know about them

 So, verify that your repository works by
checking it out, building it, tweak
something, and commit
 If something fails, please let us know so we

can fix it

Summary

Things To Do: Bad Things Will Happen
if you modify: Replace the glulookat()

function in camera.cpp
 Create a model (like

sample.cpp) with at least
4 hierarchical levels and
10 primitive shapes

 Animation Slider
 An Additional Bell

 modelerapp.*
 modelerui.*
 modelerdraw.*
 modelerview.*
 vec.h
 mat.h

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

