
Autumn 2010 Help Session

Christopher Raastad

RAY TRACER

OUTLINE

• Project Web Resources

• What do you have to do for this project?

• Ray Class

• Isect Class

• Requirements

• Tricks

• Artifact Requirement

• Bells and Whistles

PROJECT WEB PAGE

• Roadmap

• Overview of files

• STL Information

• List of useful equations

• File format description

• Debugging display documentation

• Triangle intersection handout

http://www.cs.washington.edu/education/courses/cse457/CurrentQtr/projects/trace/

http://www.cs.washington.edu/education/courses/cse457/05au/projects/trace/
http://www.cs.washington.edu/education/courses/cse457/CurrentQtr/projects/trace/

WELCOME TO THE RAYTRACER PROJECT

• Basically, you are given a RayTracer

• You have to implement:

• Shading (has multiple parts)

• Reflection and Refraction

• Sphere Intersection

• The ability to intersect triangles

• Complex objects consist of a 3D mesh made up of many

triangles

RAY CLASS

• A 3D ray is the fundamental component of a raytracer.

• ray r (start position, direction, RayType)

• enum RayType{VISIBILITY, REFLECTION, REFRACTION, SHADOW};

• example: ray r(foo, bar, ray::SHADOW);

• r.at(t), a method that determines the position of the ray r as a function

of t, the distance from the start position (t*direction vector)

• r.at(t) => where the end of the ray points at (a distance t away from the start

point)

r.at(t)

Start

position

VEC.H, MAT.H: PROVIDED MATH LIBRARIES

• vec.h gives us useful tools for 2D, 3D, and 4D vectors:

• Easy Vector Construction

• eg. Vec3d x = Vec3d(0,0,0); or Vec4d y = Vec4d(255,255,255,1);

• +,-,*,DotProduct and CrossProduct are operator overloaded

operations

• +,-,arithmetic, Vec3d v3 = v1 + v2

• *, multiply by constant, Vec3d v3 = 2*v1;

• *, dotproduct, eg. double dot = v1 * v2;

• ^, crossproduct, eg. Vec3d cross = v1 ^ v2;

• Other useful functionality, read vec.h for complete details

• normalize(), length(), iszero()

• mat.h is very similar but for matrix operations not heavily used in this

project

ISECT CLASS

• An isect represents the location where a ray intersects a specific
object.

• Important member variables:

 const SceneObject *obj; // the object that was intersected.

 double t; // the distance along the ray where it occurred.

 Vec3d N; // the normal to the surface where it occurred

 Vec2d uvCoordinates; // texture coordinates on the surface. [1.0,1.0]

 Material *material; // non-NULL if exists a unique materia l for this intersect.

 const Material &getMaterial() const; // return the material to use

• This data structure is used to record the details of a ray’s
intersection with an object as implemented in an object’s
intersection routine.

REQUIREMENT: SPHERE INTERSECTION

• Fill in Sphere::intersectLocal in SceneObjects\Sphere.cpp:

• Return true if ray r intersects the canonical sphere (sphere

centered at the origin with radius 1.0) in positive time.

• Set the values of isect i:

• i.obj = this

• i.setT(time of intersection)

• i.setN(normal at intersection).

REQUIREMENT: TRIANGLE INTERSECTION

• Fill in TrimeshFace::intersectLocal in SceneObjects\trimesh.cpp:

• Intersect r with the triangle abc:

 Vec3d &a = parent->vertices[ids [0]];

 Vec3d &b = parent->vertices[ids [1]];

 Vec3d &c = parent->vertices[ids [2]];

• Set up isect i as in the sphere intersection and return true if ray r
intersects the plane containing triangle abc and the intersection
is within the triangle.

• More Help? See page linked to on project website
• http://www.cs.washing ton.edu/education/courses/457/CurrentQtr/p rojects/ trace/extra/ triangle_intersection.pdf

http://www.cs.washington.edu/education/courses/457/CurrentQtr/projects/trace/extra/triangle_intersection.pdf

REQUIREMENT:

BLINN-PHONG SPECULAR-REFLECTION MODEL

• Fill in Material::shade in material.cpp:

• Refer to the RayTracing lecture:

• http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

• To sum over the light sources, use an iterator as described in the

comments of the code.

• CAUTION! If you are inside an object, the object’s normal will point

outside. You will need to flip that normal for any shading, reflection,

or refraction.

• (Unless of course you like funky images and less points…)

http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

REQUIREMENT:
CONTRIBUTION FROM MULTIPLE LIGHT SOURCES

• Fill in PointLight::distanceAttenuation in light.cpp

(DirectionalLight::distanceAttenuation is already done for you).

• Use the alternative described in the ray-tracing lecture where

 a = constantTerm

 b = linearTerm

 c = quadraticTerm

• These terms are defined in light.h.

REQUIREMENT: SHADOW ATTENUATION

• Fill in DirectionalLight::shadowAttenuation and
PointLight::shadowAttenuation in light.cpp.

• The ray-tracing lecture shows you where to insert this factor into the Blinn-
Phong equation (A_shadow for each light).

• Rather than simply setting the attenuation to 0 if an object blocks the light,
accumulate the product of k_t’s for objects which block the light (use the
prod function from the vec.h).

• Count each intersection with an object by the shadow ray (which may include
entering and exiting).

• See Foley, et. al. Section 16.12– this particular method is not really covered
in lecture slides

• Extra Credit: Better shadow handling (caustics, global illumination, etc.)

• Again, Check out the ray-tracing lecture:

• http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf
http://www.cs.washington.edu/education/courses/457/CurrentQtr/lectures/ray-tracing.pdf

REQUIREMENT: REFLECTION

• Modify RayTracer::traceRay in RayTracer.cpp to

implement recursive ray tracing which takes into

account reflected rays.

• See Foley, et. al. and lecture slides.

REQUIREMENT: REFRACTION
• Modify RayTracer::traceRay in RayTracer.cpp to implement

recursive ray tracing which takes into account refracted rays.

• Remember Snell’s law, watch out for total internal refraction, and

consider the case when the ray is exiting a material into air (think

about the direction of the normal)

• You can test with simple/cube_transparent.ray

• Warning: Unlike reflection, this routine has several cases to consider :

• an incoming ray

• an outgoing ray

• totally internally refracted ray.

nglass=1.5
1

2

2

1

nair=1.0003

TIPS AND TRICKS

• Use the sign of the dot product r.getDirection() with i.N to determine whether you’re

entering or exiting an object

• DON’T WRITE TOO MUCH CODE WITHOUT TESTING!!!!

• Lots of dependencies, you need to know what works to proceed.

• RAY_EPSILON RAY_EPSILON RAY_EPSILON

• Use RAY_EPSILON (which is defined as 0.00001) to account for

computer precision error when checking for intersections

• YHBW= you have bee warned

RAY_EPSILON

THE DEBUGGER TOOL IS YOUR BEST FRIEND

ARTIFACT REQUIREMENT

• Draw a pretty picture!

• One JPEG/PNG image per person traced with your Ray
Tracer submitted for voting.

• Has to be a (somewhat) original scene

• For each image submitted for voting, a short .txt description
of the scene or special features.

• Examples of each bell/whistle implemented with an
accompanying readme.txt specifying which image
demonstrates which feature (and where/how).

THE DREADED MEMORY LEAK!!!

• A Memory Leak can (and probably will) ruin your night of rendering hours before the
artifact is due.

• depth 10, Anti-Aliasing, HUGE Image ALL MEMORY CONSUMED BY ray.exe

• at 1.8 GB on Hardware lab machines

• Definition: unstoppable (except program termination) increase in acquired memory (most
which is not being useful, and un-namable in the program)

• Cause: not calling free after allocating memory

• Object constructors, vector (array) creation

• It is HIGHLY RECOMMENDED you have no memory leaks

• Solution, free stuff!

• Call the “delete [object]” on ANYTHING you create that temporarily

• i.e. 3 byte temporary vectors in rayTrace function

BELLS AND WHISTLES

• TONS of Awesome Extra Credit!!!

• Antialiasing – A must for nice scenes (to render scenes without “jaggies”)

• Interpolate trimesh material properties – will make them look nicer

• Environment/Texture/Bump Mapping – Relatively easy ways to create
complex, compelling scenes

• Single Image Random Dot Stereograms – I have no idea, but they look cool!

• Depth of field, Soft shadows, Motion blur, Glossy reflection – most images
we’re used to have at least one of these effects

• NOTE: Please add control boxes for substantial ray tracing modifications so
the required extensions are easily gradable

• see sample solution style

• Especially things like anti-aliasing, glossy reflection, soft shadows, etc.

3D AND 4D FRACTALS

http://www.cs.washington.edu/education/courses/cse457/04sp/projects/trace/vote/omicron-tortman/omicron-tortman2.txt

CONSTRUCTIVE SOLID GEOMETRY

• Allows for complex objects while still just intersecting simple primitives

