
1

Projections

Brian Curless
CSE 457

Autumn 2010

2

Reading

Required:

 Angel, 5.1-5.6

Further reading:

 Angel 5.8-5.9

 Foley, et al, Chapter 5.6 and Chapter 6

 David F. Rogers and J. Alan Adams,
Mathematical Elements for Computer Graphics,
2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

 I. E. Sutherland, R. F. Sproull, and R. A.
Schumacker, A characterization of ten hidden
surface algorithms, ACM Computing Surveys 6(1):
1-55, March 1974.

3

The pinhole camera

The first camera - “camera obscura” - known to Aristotle.

In 3D, we can visualize the blur induced by the pinhole
(a.k.a., aperture):

Q: How would we reduce blur?

4

Shrinking the pinhole

Q: What happens as we continue to shrink the aperture?

5

Shrinking the pinhole, cont’d

6

In practice, pinhole cameras require long exposures,
can suffer from diffraction effects, and give an
inverted image.

In graphics, none of these physical limitations is a
problem.

The image is rendered onto an image plane (usually
in front of the camera).

Viewing rays emanate from the center of projection
(COP) at the center of the pinhole.

The image of an object point P is at the intersection
of the viewing ray through P and the image plane.

But is P visible? This the problem of hidden surface
removal (a.k.a., visible surface determination).

Imaging with the synthetic camera

7

Ray casting

Idea: For each pixel center Pij

 Send ray from eye point (COP), C, through Pij

into scene.

 Intersect ray with each object.

 Select nearest intersection.

One way to simulate the pinhole camera and
determine which point is visible at each pixel is ray
casting.

8

Ray casting, cont.

Implementation:

 Might parameterize each ray:

r(t) = C + t (Pij - C)

where t > 0.

 Each object Ok returns tk > 0 such that first
intersection with Ok occurs at r(tk).

Q: Given the set {tk} what is the first intersection point?

9

Warping space

A very different approach is to take the imaging setup:

then warp all of space so that all the rays are parallel
(and distant objects are smaller than closer objects):

and then just draw everything onto the image plane,
keeping track of what is in front:

10

3D Geometry Pipeline

Graphics hardware follows the “warping space” approach.

Before being turned into pixels, a piece of geometry goes
through a number of transformations...

11

3D Geometry Pipeline (cont’d)

12

World -> eye transformation

Let’s look at how we would compute the world->eye
transformation.

13

gluLookAt

To specify the world->eye transformation, OpenGL has a
helper command:

gluLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)

To simplify notation, we’ll re-write as:

gluLookAt (e, a, u)

Note that u is only required to lie in the plane. e ey z

14

Projections

Projections transform points in n-space to m-space,
where m<n.

In 3-D, we map points from 3-space to the
projection plane (PP) (a.k.a., image plane) along
projectors (a.k.a., viewing rays) emanating from the
center of projection (COP):

There are two basic types of projections:

 Perspective – distance from COP to PP finite

 Parallel – distance from COP to PP infinite

15

Parallel projections

For parallel projections, we specify a direction of
projection (DOP) instead of a COP.

There are two types of parallel projections:

 Orthographic projection – DOP perpendicular
to PP

 Oblique projection – DOP not perpendicular
to PP

We can write orthographic projection onto the z=0
plane with a simple matrix.

Normally, we do not drop the z value right away.
Why not?

' 1 0 0 0

' 0 1 0 0

1 0 0 0 1
1

x
x

y
y

z

 
    
         
       

 

16

Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974]
can be used to determine which surface point is visible at
each pixel.

Here is pseudocode for the Z-buffer hidden surface
algorithm:

Q: What should FAR be set to?

for each pixel (i,j) do

Z-buffer [i,j]  FAR

Framebuffer[i,j] <background color>

end for

for each polygon A do

for each pixel in A do

Compute depth z of A at (i,j)

if z > Z-buffer [i,j] then

Z-buffer [i,j]  z

Framebuffer[i,j]  color of A

end if

end for

end for

17

Rasterization

The process of filling in the pixels inside of a polygon
is called rasterization.

During rasterization, the z value can be computed
incrementally (fast!).

Curious fact:

 Described as the “brute-force image space
algorithm” by [SSS]

 Mentioned only in Appendix B of [SSS] as a point
of comparison for huge memories, but written off
as totally impractical.

Today, Z-buffers are commonly implemented in
hardware.

18

Properties of parallel projection

Properties of parallel projection:

 Not realistic looking

 Good for exact measurements

 Are actually a kind of affine transformation
• Parallel lines remain parallel

• Ratios are preserved

• Angles not (in general) preserved

 Most often used in CAD, architectural drawings,
etc., where taking exact measurement is
important

19

Derivation of perspective projection

Consider the projection of a point onto the
projection plane:

By similar triangles, we can compute how much the x
and y coordinates are scaled:

[Note: Angel takes d to be a negative number, and
thus avoids using a minus sign.]

20

Homogeneous coordinates revisited

Remember how we said that affine transformations
work with the last coordinate always set to one.

What happens if the coordinate is not one?

We divide all the coordinates by w:

If w = 1, then nothing changes.

Sometimes we call this division step the “perspective
divide.”

/

/

/

1

x x w

y y w

z z w

w

   
   
   
   
   
   

21

Homogeneous coordinates and
perspective projection

Now we can re-write the perspective projection as a
matrix equation:

After division by w, we get:

Again, projection implies dropping the z coordinate
to give a 2D image, but we usually keep it around a
little while longer.

 
      
             
            

 

' 1 0 0 0

' 0 1 0 0

' 0 0 1/ 0 /
1

x
x x

y
y y

z
w d z d

  
   
       
    

 
  

'

'

1 1

d
x

zx
d

y y
z

22

Projective normalization

After applying the perspective transformation and
dividing by w, we are free to do a simple parallel
projection to get the 2D image.

What does this imply about the shape of things after
the perspective transformation + divide?

23

Viewing angle

An alternative to specifying the distance from COP to
PP is to specify a viewing angle:

Given the height of the image h and , what is d?

What happens to d as  increases (while h is
constant)?

24

Zoom and dolly

25

Vanishing points

What happens to two parallel lines that are not
parallel to the projection plane?

Think of train tracks receding into the horizon...

The equation for a line is:

After perspective transformation we get:

1 0

x x

y y

z z

p v

p v
t t

p v

   
   
      
   
   
   

l p v

'

'

' () /

x x

y y

z z

x p tv

y p tv

w p tv d

   
       
       

26

Vanishing points (cont'd)

Dividing by w:

Letting t go to infinity:

We get a point!

What happens to the line l = q + tv?

Each set of parallel lines intersect at a vanishing
point on the PP.

Q: How many vanishing points are there?

'

'

'
1

x x

z z

y y

z z

p tv
d

p tv
x

p tv
y d

p tv
w

  
  

            
 
  

27

Clipping and the viewing frustum

The center of projection and the portion of the
projection plane that map to the final image form an
infinite pyramid. The sides of the pyramid are
clipping planes.

Frequently, additional clipping planes are inserted to
restrict the range of depths. These clipping planes
are called the near and far or the hither and yon
clipping planes.

All of the clipping planes bound the the viewing
frustum.

28

Properties of perspective projections

The perspective projection is an example of a
projective transformation.

Here are some properties of projective
transformations:

 Lines map to lines

 Parallel lines do not necessarily remain parallel

 Ratios are not preserved

One of the advantages of perspective projection is
that size varies inversely with distance – looks
realistic.

A disadvantage is that we can't judge distances as
exactly as we can with parallel projections.

29

Human vision and perspective

The human visual system uses a lens to collect light
more efficiently, but records perspectively projected
images much like a pinhole camera.

Q: Why did nature give us eyes that perform
perspective projections?

Q: Do our eyes “see in 3D”?

30

Summary

What to take away from this lecture:

 All the boldfaced words.

 An appreciation for the various coordinate
systems used in computer graphics.

 How to compute the world->eye coordinate
transformation with gluLookAt.

 How a pinhole camera works.

 How orthographic projection works.

 How the perspective transformation works.

 How we use homogeneous coordinates to
represent perspective projections.

 The properties of vanishing points.

 The mathematical properties of projective
transformations.

