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Reading

Required:

 Angel, 5.1-5.6

Further reading:

 Angel 5.8-5.9

 Foley, et al, Chapter 5.6 and Chapter 6

 David F. Rogers and J. Alan Adams, 
Mathematical Elements for Computer Graphics, 
2nd Ed., McGraw-Hill, New York, 1990, Chapter 2. 

 I. E. Sutherland, R. F. Sproull, and R. A. 
Schumacker, A characterization of ten hidden 
surface algorithms, ACM Computing Surveys 6(1): 
1-55, March 1974.
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The pinhole camera

The first camera - “camera obscura” - known to Aristotle.

In 3D, we can visualize the blur induced by the pinhole 
(a.k.a., aperture):

Q: How would we reduce blur?
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Shrinking the pinhole

Q: What happens as we continue to shrink the aperture?
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Shrinking the pinhole, cont’d
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In practice, pinhole cameras require long exposures, 
can suffer from diffraction effects, and give an 
inverted image.

In graphics, none of these physical limitations is a 
problem.

The image is rendered onto an image plane (usually 
in front of the camera).

Viewing rays emanate from the center of projection
(COP) at the center of the pinhole.

The image of an object point P is at the intersection 
of the viewing ray through P and the image plane.

But is P visible?  This the problem of hidden surface 
removal (a.k.a., visible surface determination).

Imaging with the synthetic camera
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Ray casting

Idea: For each pixel center Pij

 Send ray from eye point (COP), C, through Pij

into scene.

 Intersect ray with each object.

 Select nearest intersection.

One way to simulate the pinhole camera and 
determine which point is visible at each pixel is ray 
casting.
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Ray casting, cont.

Implementation:

 Might parameterize each ray:

r(t) = C + t (Pij - C)

where t > 0.

 Each object Ok returns tk > 0 such that first 
intersection with Ok occurs at r(tk).

Q: Given the set {tk} what is the first intersection point?
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Warping space

A very different approach is to take the imaging setup:

then warp all of space so that all the rays are parallel 
(and distant objects are smaller than closer objects):

and then just draw everything onto the image plane, 
keeping track of what is in front:

10

3D Geometry Pipeline

Graphics hardware follows the “warping space” approach.

Before being turned into pixels, a piece of geometry goes 
through a number of transformations...
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3D Geometry Pipeline (cont’d)
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World -> eye transformation

Let’s look at how we would compute the world->eye 
transformation.
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gluLookAt

To specify the world->eye transformation, OpenGL has a 
helper command:

gluLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy, upz )

To simplify notation, we’ll re-write as:

gluLookAt (e, a, u)

Note that u is only required to lie in the              plane. e ey z
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Projections

Projections transform points in n-space to m-space, 
where m<n.

In 3-D, we map points from 3-space to the 
projection plane (PP) (a.k.a., image plane) along 
projectors (a.k.a., viewing rays) emanating from the 
center of projection (COP): 

There are two basic types of projections:

 Perspective – distance from COP to PP finite

 Parallel – distance from COP to PP infinite
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Parallel projections

For parallel projections, we specify a direction of 
projection (DOP) instead of a COP.

There are two types of parallel projections:

 Orthographic projection – DOP perpendicular 
to PP

 Oblique projection – DOP not perpendicular 
to PP

We can write orthographic projection onto the z=0
plane with a simple matrix.

Normally, we do not drop the z value right away.  
Why not?
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Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974] 
can be used to determine which surface point is visible at 
each pixel. 

Here is pseudocode for the Z-buffer hidden surface 
algorithm:

Q: What should FAR be set to?

for each pixel (i,j) do

Z-buffer [i,j]   FAR

Framebuffer[i,j] <background color>

end for

for each polygon A do

for each pixel in A do

Compute depth z of A at (i,j)

if z > Z-buffer [i,j] then

Z-buffer [i,j]  z

Framebuffer[i,j]  color of A

end if

end for

end for
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Rasterization

The process of filling in the pixels inside of a polygon 
is called rasterization.

During rasterization, the z value can be computed 
incrementally (fast!).

Curious fact:

 Described as the “brute-force image space 
algorithm” by [SSS]

 Mentioned only in Appendix B of [SSS] as a point 
of comparison for  huge memories, but written off 
as totally impractical.

Today, Z-buffers are commonly implemented in 
hardware.
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Properties of parallel projection

Properties of parallel projection:

 Not realistic looking

 Good for exact measurements

 Are actually a kind of affine transformation
• Parallel lines remain parallel

• Ratios are preserved

• Angles not (in general) preserved

 Most often used in CAD, architectural drawings, 
etc., where taking exact measurement is 
important

19

Derivation of perspective projection

Consider the projection of a point onto the 
projection plane:

By similar triangles, we can compute how much the x
and y coordinates are scaled:

[Note: Angel takes d to be a negative number, and 
thus avoids using a minus sign.]
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Homogeneous coordinates revisited

Remember how we said that affine transformations 
work with the last coordinate always set to one.

What happens if the coordinate is not one?  

We divide all the coordinates by w:

If w = 1, then nothing changes.

Sometimes we call this division step the “perspective 
divide.”
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Homogeneous coordinates and 
perspective projection

Now we can re-write the perspective projection as a 
matrix equation:

After division by w, we get:

Again, projection implies dropping the z coordinate 
to give a 2D image, but we usually keep it around a 
little while longer.
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Projective normalization

After applying the perspective transformation and 
dividing by w, we are free to do a simple parallel 
projection to get the 2D image.

What does this imply about the shape of things after 
the perspective transformation + divide?
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Viewing angle

An alternative to specifying the distance from COP to 
PP is to specify a viewing angle:

Given the height of the image h and , what is d?

What happens to d as  increases (while h is 
constant)?
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Zoom and dolly
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Vanishing points

What happens to two parallel lines that are not 
parallel to the projection plane?

Think of train tracks receding into the horizon...

The equation for a line is:

After perspective transformation we get:
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Vanishing points (cont'd)

Dividing by w:

Letting t go to infinity:

We get a point!

What happens to the line l = q + tv?

Each set of parallel lines intersect at a vanishing 
point on the PP. 

Q: How many vanishing points are there?
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Clipping and the viewing frustum

The center of projection and the portion of the 
projection plane that map to the final image form an 
infinite pyramid. The sides of the pyramid are 
clipping planes.

Frequently, additional clipping planes are inserted to 
restrict the range of depths.  These clipping planes 
are called the near and far or the hither and yon
clipping planes.

All of the clipping planes bound the the viewing 
frustum.
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Properties of perspective projections

The perspective projection is an example of a 
projective transformation.

Here are some properties of projective 
transformations:

 Lines map to lines

 Parallel lines do not necessarily remain parallel

 Ratios are not preserved

One of the advantages of perspective projection is 
that size varies inversely with distance – looks 
realistic.

A disadvantage is that we can't judge distances as 
exactly as we can with parallel projections.
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Human vision and perspective

The human visual system uses a lens to collect light 
more efficiently, but records perspectively projected 
images much like a pinhole camera.

Q:  Why did nature give us eyes that perform 
perspective projections? 

Q: Do our eyes “see in 3D”?
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Summary

What to take away from this lecture:

 All the boldfaced words.

 An appreciation for the various coordinate 
systems used in computer graphics.

 How to compute the world->eye coordinate 
transformation with gluLookAt.

 How a pinhole camera works.

 How orthographic projection works.

 How the perspective transformation works.

 How we use homogeneous coordinates to 
represent perspective projections.

 The properties of vanishing points.

 The mathematical properties of projective 
transformations.


