Reading

Jain, Kasturi, Schunck, *Machine Vision*. McGraw-Hill, 1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4.

Image processing

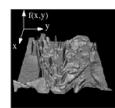
Brian Curless CSE 457 Autumn 2010

1

lı

Images as functions





What is an image?

We can think of an image as a function, $\emph{f},$ from R^2 to R

- f(x, y) gives the intensity of a channel at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

A color image is just three functions pasted together.
We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

What is a digital image?

In computer graphics, we usually operate on digital (discrete) images:

- Sample the space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are \triangle apart, we can write this as:

 $f[i,j] = Quantize\{f(i \Delta, j \Delta)\}$

Image processing

An image processing operation typically defines a new image g in terms of an existing image f

The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

$$g(x,y) = t(f(x,y))$$

Examples: threshold, RGB \rightarrow grayscale

Note: a typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y.

$$\begin{bmatrix} Y \\ J \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ B \end{bmatrix}$$

Pixel movement

Some operations preserve intensities, but move pixels around in the image

$$g(x, y) = f(\tilde{x}(x, y), \tilde{y}(x, y))$$

Examples: many amusing warps of images

Noise

Image processing is also useful for noise reduction and edge enhancement. We will focus on these applications for the remainder of the lecture...

Common types of noise:

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

[Show image sequence.]

Ideal noise reduction

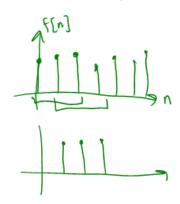
9

Ideal noise reduction

1

Practical noise reduction

How can we "smooth" away noise in a single image?



Is there a more abstract way to represent this sort of operation? Of course there is!

Convolution

One of the most common methods for filtering an image is called **convolution**.

In 1D, convolution is defined as:

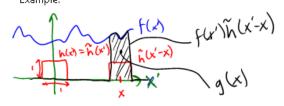
$$g(x) = f(x) *h(x)$$

$$= \int_{-\infty}^{\infty} f(x')h(x - x')dx'$$

$$= \int_{-\infty}^{\infty} f(x')\tilde{h}(x' - x)dx'$$

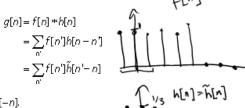
where $\tilde{h}(x) = h(-x)$.

Example:



Discrete convolution

For a digital signal, we define discrete convolution



where $\tilde{h}[n] = h[-n]$.

A side:

One can show that convolution has some convenient properties. Given functions a, b, c:

$$a*b = b*a$$

$$(a*b)*c = a*(b*c)$$

$$a*(b+c) = a*b + a*c$$

We'll make use of these properties later...

Convolution in 2D

In two dimensions, convolution becomes:

$$g(x, y) = f(x, y) *h(x, y)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y')h(x - x', y - y')dx'dy'$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y')\tilde{h}(x' - x, y' - y)dx'dy'$$

where $\tilde{h}(x, y) = h(-x, -y)$.

Discrete convolution in 2D

Similarly, discrete convolution in 2D is:

$$\begin{split} g[n,m] &= f[n,m] * h[n,m] \\ &= \sum_{m} \sum_{n'} f[n',m] h[n-n',m-m'] \\ &= \sum_{m} \sum_{n'} f[n',m] \tilde{h}[n'-n,m'-m] \end{split}$$

where $\tilde{h}[n,m] = h[-n,-m]$.

Convolution representation

Since f and h are defined over finite regions, we can write them out in two-dimensional arrays:

f[n,n]

128	54	9	78	100
145	98	240	233	86
89	177	246	228	127
67	90	255	237	95
106	111	128	167	20
221	154	97	123	0

 $\times 0.1$ X0.2X 0.1 X0.1

ñ[n,n] filter,

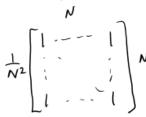
Kernel

Note: This is not matrix multiplication!

Q: What happens at the edges?

Mean filters

How can we represent our noise-reducing averaging as a convolution filter (know as a mean filter)?



17

Effect of mean filters

Gaussian

Gaussian filters

Gaussian filters weigh pixels based on their distance from the center of the convolution filter. In particular:

$$h[n,m] = \frac{e^{-(n^2+m^2)/(2\sigma^2)}}{C}$$

This does a decent job of blurring noise while preserving features of the image.

What parameter controls the width of the Gaussian? 6

What happens to the image as the Gaussian filter bluccer kernel gets wider?

What is the constant C? What should we set it to?

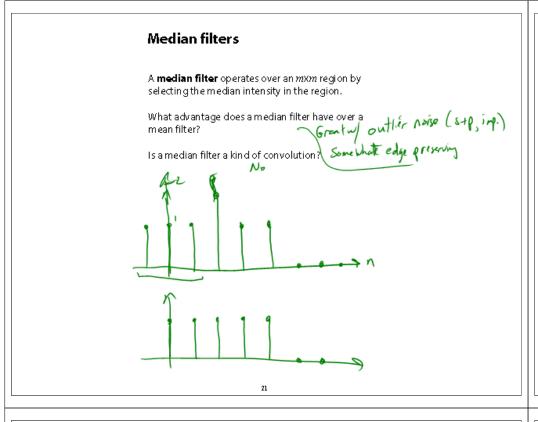
$$C = \sum_{n_1 m}^{N_1 m} e^{-(n^2 + m^2/2b^2)}$$

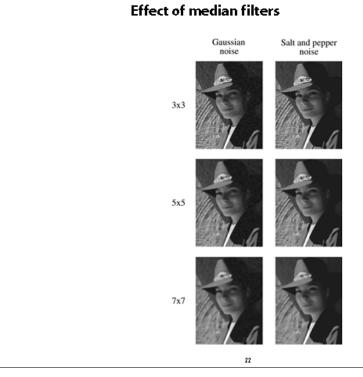
Effect of Gaussian filters

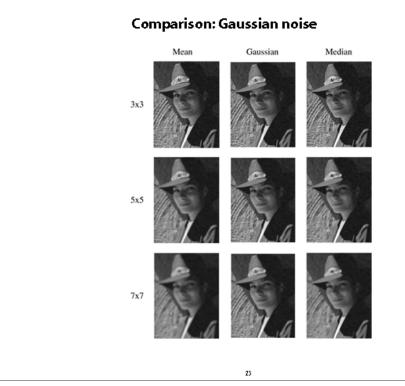
3x3

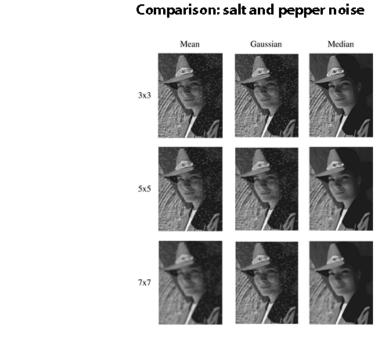
Gaussian

Salt and pepper



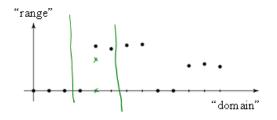


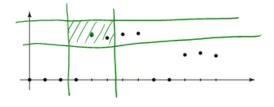




Bilateral filtering

Bilateral filtering is a method to average together nearby samples only if they are similar in value.

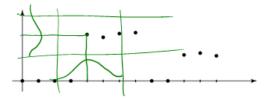




5

Bilateral filtering

We can also change the filter to something "nicer" like Gaussians:



Recall that convolution looked like this:

$$g[n] = \sum_{n'} f[n']h[n-n']$$

Bilateral filter is similar, but includes both range and domain filtering:

$$g[n] = 1/ C \sum_{n'} f[n'] h_{\sigma_s}[n-n'] \ h_{\sigma_r}(f[n] - f[n'])$$

and you have to normalize as you go:

$$C = \sum_{n'} h_{\sigma_s}[n-n'] \ h_{\sigma_r}(f[n]-f[n'])$$

2

Input

$$q = 0.1$$

$$\alpha = 0.25$$

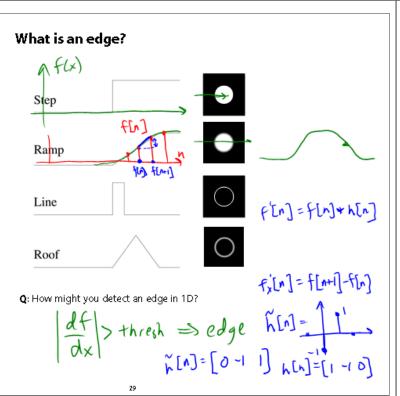
Paris, et al. SIGGRAPH course notes 2007

27

Edge detection

One of the most important uses of image processing is **edgedetection**:

- Really easy for humans
- · Really difficult for computers
- Fundamental in computer vision
- Important in many graphics applications



Gradients

The gradient is the 2D equivalent of the derivative:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

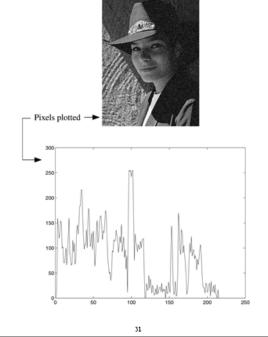
Properties of the gradient

- It's a vector
- ullet Points in the direction of maximum increase of f
- Magnitude is rate of increase

How can we approximate the gradient in a discrete

 $\frac{\partial f}{\partial x} \approx f_{x}[n,m] = f[n+1,m] - f[n,m] \tilde{h}_{x}^{2}$ $\frac{\partial f}{\partial y} \approx f_{y}[n,m] = f[n,m+1] - f[n,m] \tilde{h}_{x}^{2}$

Less than ideal edges



Steps in edge detection

Edge detection algorithms typically proceed in three or four steps:

- Filtering: cut down on noise
- Enhancement: amplify the difference between edges and non-edges
- Detection: use a threshold operation
- Localization (optional): estimate geometry of edges beyond pixels

Edge enhancement

A popular gradient filter is the Sobel operator:

$$\tilde{s}_{z} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{\tilde{s}}'_{,} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

We can then compute the magnitude of the vector (s_x, s_y) .

Note that these operators are conveniently "preflipped" for convolution, so you can directly slide these across an image with out flipping first.

Results of Sobel edge detection

Original

Smoothed

Sv ± 128

Sv + 128

Magnitude

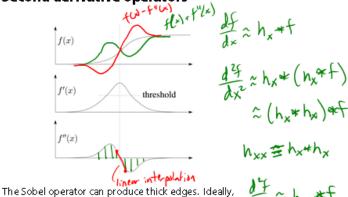
Threshold = 64

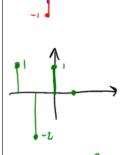
Threshold = 128

.

33

Second derivative operators





we're looking for infinitely thin boundaries.

An alternative approach is to look for local extrema in the first derivative: places where the change in the $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

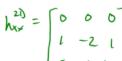
Q: A peak in the first derivative corresponds to what in the second derivative?

Q: How might we write this as a convolution filter?

Localization with the Laplacian

An equivalent measure of the second derivative in 2D is the **Laplacian**:

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$



 $h_{XX}^{10} = [1 - 2 1]$

Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:

$$h_{yy} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\Delta = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

ne discrete ~ 1.2

(The symbol Δ is often used to refer to the *discrete* Laplacian filter.)

Λ×f

Zero crossings in a Laplacian filtered image can be used to localize edges.

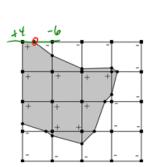
Localization with the Laplacian

Laplacian (+128)

37

Marching squares

We can convert these signed values into edge contours using a "marching squares" technique:



Sharpening with the Laplacian

Original

Original + Laplacian

(x,y)-14+(x,y)

Why does the sign make a difference?

How can you write the filter that makes the sharpened image?

Summary

What you should take away from this lecture:

- The meanings of all the boldfaced terms.
- How noise reduction is done
- How discrete convolution filtering works
- The effect of mean, Gaussian, and median filters
- What an image gradient is and how it can be computed
- · How edge detection is done
- · What the Laplacian image is and how it is used in either edge detection or image sharpening