
Reading
Shoemake, "Quaternions Tutorial"
2

Animation

Articulated models:

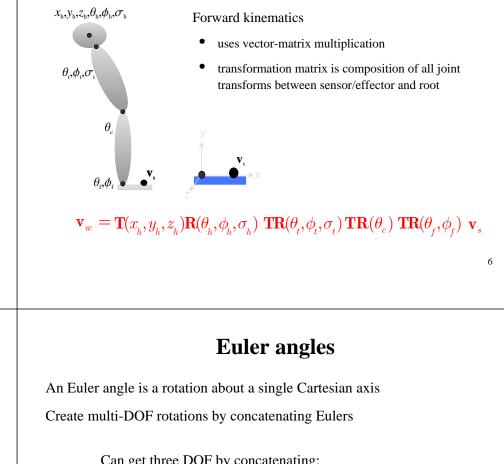
- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

Character Representation

Character Models are rich, complex

- hair, clothes (particle systems)
- muscles, skin (FFD's *etc*.)


Focus is rigid-body Degrees of Freedom (DOFs)

• joint angles

Simple Rigid Body → Skeleton

Computing a Sensor Position

Joints = Rotations

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

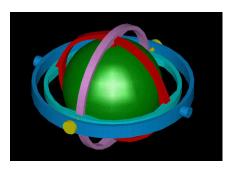
1 DOF: knee

2 DOF: wrist

5

Can get three DOF by concatenating:

7


Singularities

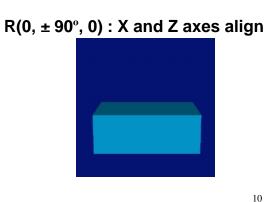
What *is* a singularity?

• continuous subspace of parameter space all of whose elements map to same rotation

Why is this bad?

• induces **gimbal lock** - two or more axes align, results in loss of rotational DOFs (*i.e.* derivatives)

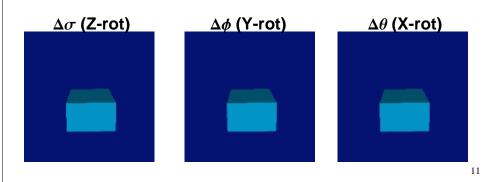
Quit	Reset	Gen Test	Done Test	Matrix	Help
-29	-40	Ĭ			
e -21		-71	-43	Z:	74

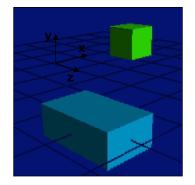

9

Singularities in Action

An object whose orientation is controlled by Euler rotation $XYZ(\theta,\phi,\sigma)$

$$\mathbf{R}(\theta,\phi,\sigma) = \mathbf{R}_{x}(\theta) \cdot \mathbf{R}_{y}(\phi) \cdot \mathbf{R}_{z}(\sigma)$$


R(0,0,0) : Okay

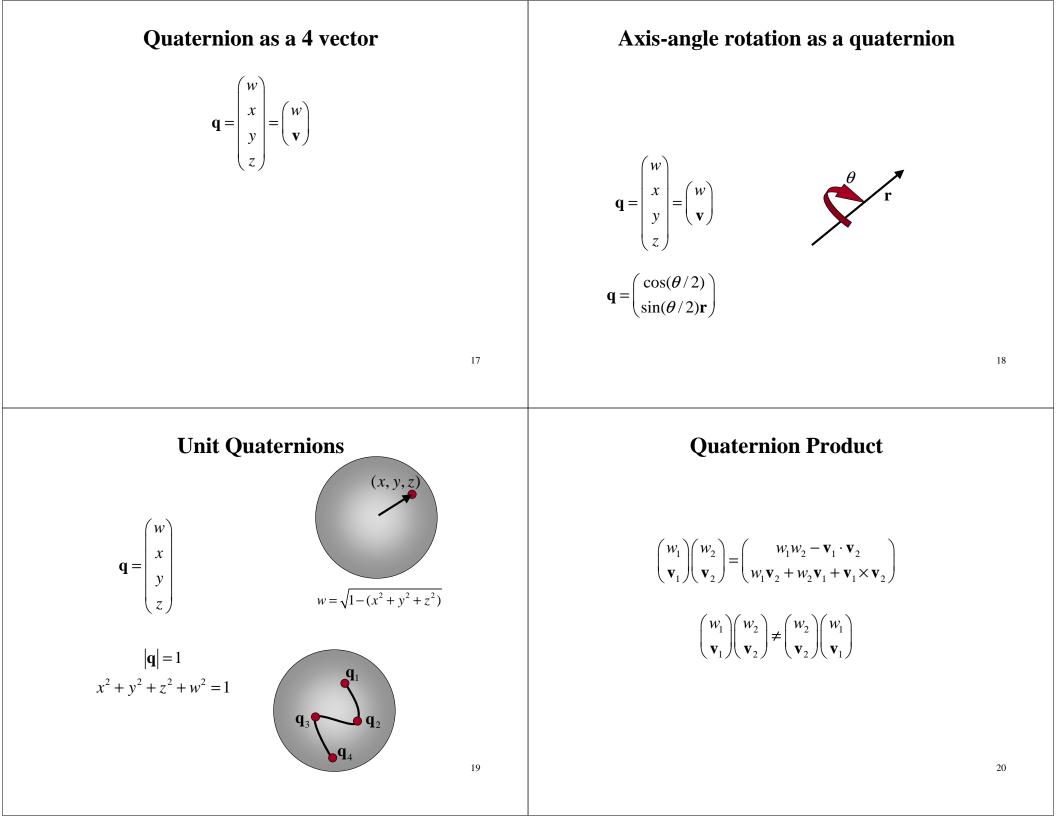


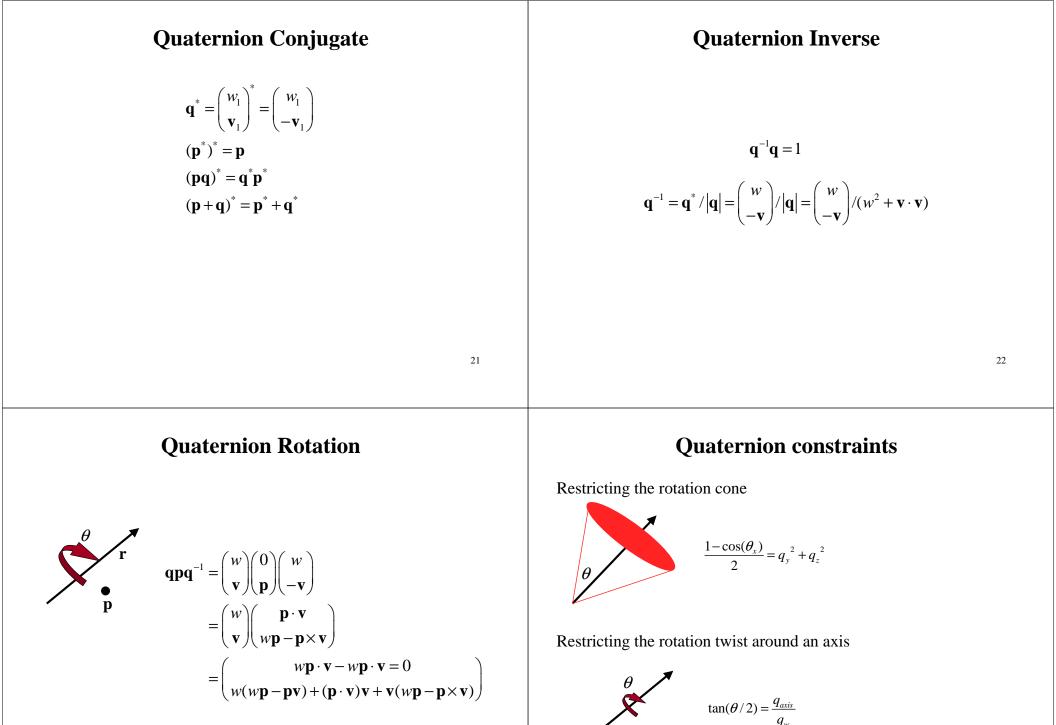
Eliminates a DOF

In this configuration, changing θ (X Euler angle) and σ (Z Euler angle) produce the same result.

No way to rotate around world X axis!

No applied force or other stimuli can induce rotation about world X-axis


The object locks up!!


Resulting Behavior

Singularities in Euler Angles	Other Properties of Euler Angles
	Several important tasks are easy:
Cannot be avoided (occur at 0° or 90°)	• interactive specification (sliders, <i>etc.</i>)
	• joint limits
Difficult to work around	• Euclidean interpolation (Hermites, Beziers, <i>etc.</i>)
	 May be funky for tumbling bodies
But, only affects three DOF rotations	 fine for most joints
13	14
Quaternions	History of Quaternions
But singularities are unacceptable for IK, optimization	Invented by Sir William Rowan Hamilton in 1843
	$H = w + \mathbf{i}x + \mathbf{j}y + \mathbf{k}z$
Traditional solution: Use unit quaternions to represent rotations	where $i^2 = j^2 = k^2 = ijk = -1$
• S ³ has same topology as rotation space (a sphere), so no singularities	I still must assert that this discovery appears to me to be as important for the middle of the nineteenth century as the discovery of fluxions [the calculus] was for the close of the seventeenth.
	Hamilton
	[quaternions] although beautifully ingenious, have been an unmixed evil to those who have touched

Thompson

them in any way.

What about a quaternion product $\mathbf{q}_1 \mathbf{q}_2^2$

Matrix Form

 $\mathbf{q} = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$

$$\mathbf{M} = \begin{pmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{pmatrix}$$

What Hierarchies Can and Can't Do

Advantages:

- Reasonable control knobs
- Maintains structural constraints

Disadvantages:

- Doesn't always give the "right" control knobs
 - e.g. hand or foot position re-rooting may help
- Can't do closed kinematic chains (keep hand on hip)
- Other constraints: do not walk through walls

Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

"Optimal" interpolation - geodesics map to shortest paths in rotation space

Nice calculus (corresponds to rotations)

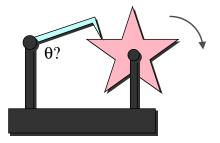
26

Procedural Animation

Transformation parameters as functions of other variables

Simple example:

- a clock with second, minute and hour hands
- hands should rotate together
- express all the motions in terms of a "seconds" variable
- whole clock is animated by varying the seconds parameter



25

Models as Code: draw-a-bug		Motion Editing
<pre>void draw_bug(walk_phase_angle, xpos, ypos zpos){ pushmatrix translate(xpos,ypos,zpos) calculate all six sets of leg angles based on walk phase angle. draw bug body for each leg: pushmatrix translate(leg pos relative to body) draw_bug_leg(theta1&theta2 for that leg) popmatrix popmatrix }</pre>		Tools for transforming already existing animations
<pre>void draw_bug_leg(float theta1, float theta2) { glPushMatrix(); glRotatef(theta1,0,0,1); draw_leg_segment(SEGMENT1_LENGTH) glTranslatef(SEGMENT1_LENGTH,0,0); glRotatef(theta2,0,0,1); draw_leg_segment(SEGMENT2_LENGTH) glPopMatrix(); }</pre>	29	30

Hard Example

In the figure below, what expression would you use to calculate the arm's rotation angle to keep the tip on the star-shaped wheel as the wheel rotates???

