
Physically Based Modeling
Differential Equation Basics

Andrew Witkin and David Baraff
Pixar Animation Studios

Please note: This document is2001 by Andrew Witkin and David Baraff. This
chapter may be freely duplicated and distributed so long as no consideration is
received in return, and this copyright notice remains intact.

Differential Equation Basics

Andrew Witkin and David Baraff
Pixar Animation Studios

1 Initial Value Problems

Differential equations describe the relation between an unknown function and its derivatives. To
solvea differential equation is to find a function that satisfies the relation, typically while satisfying
some additional conditions as well. In this course we will be concerned primarily with a particular
class of problems, calledinitial value problems.In a canonical initial value problem, the behavior
of the system is described by an ordinary differential equation (ODE) of the form

ẋ = f (x, t),

where f is a known function (i.e. something we can evaluate givenx andt ,) x is thestateof the
system, anḋx is x’s time derivative. Typically,x and ẋ are vectors. As the name suggests, in an
initial value problem we are givenx(t0) = x0 at some starting timet0, and wish to followx over
time thereafter.

The generic initial value problem is easy to visualize. In 2D, x(t) sweeps out a curve that
describes the motion of a pointp in the plane. At any pointx the function f can be evaluated to
provide a 2-vector, sof defines a vector field on the plane (see figure 1.) The vector atx is the
velocity that the moving pointp must have if it ever moves throughx (which it may or may not.)
Think of f asdriving p from point to point, like an ocean current. Wherever we initially depositp,
the “current” at that point will seize it. Wherep is carried depends on where we initially drop it, but
once dropped, all future motion is determined byf . The trajectory swept out byp through f forms
an integral curveof the vector field. See figure 2.

We wrote f as a function of bothx andt , but the derivative function may or may not depend
directly on time. If it does, then not only the pointp but the the vector field itself moves, so thatp’s
velocity depends not only on where it is, but on when it arrives there. In that case, the derivativeẋ
depends on time intwo ways:first, the derivative vectors themselves wiggle, and second, the point
p, because it moves on a trajectoryx(t), sees different derivative vectors at different times. This
dual time dependence shouldn’t lead to confusion if you maintain the picture of a particle floating
through an undulating vector field.

2 Numerical Solutions

Standard introductory differential equation courses focus onsymbolicsolutions, in which the func-
tional form for the unknown function is to be guessed. For example, the differential equation
ẋ = −kx, whereẋ denotes the time derivative ofx, is satisfied byx = e−kt.

In contrast, we will be concerned exclusively withnumericalsolutions, in which we take dis-
cretetime stepsstarting with the initial valuex(t0). To take a step, we use the derivative function

B1

Vector Field

forms a vector
field.

x = f (x,t)

The derivative
function

Initial Value Problem

Start Here

Follow the vectors…

Figure 1: The derivative functionf (x, t). defines a vector field.

Figure 2: An initial value problem. Starting from a pointx0, move with the velocity specified by
the vector field.

SIGGRAPH 2001COURSENOTES B2 PHYSICALLY BASED MODELING

Euler's Method

x(t + ∆t) = x(t) + ∆t f(x,t)

• Simplest numerical
solution method

• Discrete time steps

• Bigger steps, bigger
errors.

Figure 3: Euler’s method: instead of the true integral curve, the approximate solution follows a
polygonal path, obtained by evaluating the derivative at the beginning of each leg. Here we show
how the accuracy of the solution degrades as the size of the time step increases.

f to calculate an approximate change inx,1x, over a time interval1t , then incrementx by1x to
obtain the new value. In calculating a numerical solution, the derivative functionf is regarded as
a black box: we provide numerical values forx andt , receiving in return a numerical value forẋ.
Numerical methods operate by performing one or more of thesederivative evaluationsat each time
step.

2.1 Euler’s Method

The simplest numerical method is called Euler’s method. Let our initial value forx be denoted by
x0 = x(t0) and our estimate ofx at a later timet0+ h by x(t0+ h), whereh is astepsizeparameter.
Euler’s method simply computesx(t0+ h) by taking a step in the derivative direction,

x(t0+ h) = x0+ hẋ(t0).

You can use the mental picture of a 2D vector field to visualize Euler’s method. Instead of the
real integral curve,p follows a polygonal path, each leg of which is determined by evaluating the
vector f at the beginning, and scaling byh. See figure 3.

Though simple, Euler’s method is not accurate. Consider the case of a 2D function f whose
integral curves are concentric circles. A pointp governed byf is supposed to orbit forever on
whichever circle it started on. Instead, with each Euler step,p will move on a straight line to a circle
of larger radius, so that its path will follow an outward spiral. Shrinking the stepsize will slow the
rate of this outward drift, but never eliminate it.

Moreover, Euler’s method can be unstable. Consider a 1D function f = −kx, which should
make the pointp decay exponentially to zero. For sufficiently small step sizes we get reasonable

SIGGRAPH 2001COURSENOTES B3 PHYSICALLY BASED MODELING

Two Problems

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
your choice.

Instability: off to
Neptune!

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals
outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking
the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.
Below: too large a stepsize can make Euler’s method diverge.

behavior, but whenh > 1/k, we have|1x| > |x|, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all
their time performing derivative evaluations, so the computational costper stepis determined by
the number of evaluations per step. Though Euler’s method only requires one evaluation per step,
the real efficiency of a method depends on the size of the steps it lets you take—while preserving
accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-
quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because
their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at
the error that the method produces. The key to understanding what’s going on is theTaylor series:
Assumingx(t) is smooth, we can express its value at the end of the step as an infinite sum involving
the the value and derivatives at the beginning:

x(t0+ h) = x(t0)+ hẋ(t0)+ h2

2!
ẍ(t0)+ h3

3!
x˙̇ ˙(t0)+ . . .+ hn

n!

∂nx
∂tn
+ . . .

As you can see, we get the Euler update formula bytruncating the series, discarding all but the
first two terms on the right hand side. This means that Euler’s method would be correct only if
all derivatives beyond the first were zero, i.e. ifx(t) were linear. Theerror term, the difference
between the Euler step and the full, untruncated Taylor series, is dominated by the leading term,
(h2/2)ẍ(t0). Consequently, we can describe the error asO(h2) (read“Order h squared”.) Suppose

SIGGRAPH 2001COURSENOTES B4 PHYSICALLY BASED MODELING

that we chop our stepsize in half; that is, we take steps of sizeh
2. Although this produces only about

one fourth the error we got with a stepsize ofh, we have to take twice as many steps over any given
interval. That means that the error we accumulate over an intervalt0 to t1 depends linearly uponh.
Theoretically, using Euler’s method we can numerically computex over an intervalt0 to t1 with as
little error as we want, by choosing a suitably smallh. In practice, a great many timesteps might be
required, depending on the error and the functionf .

2.2 The Midpoint Method

If we were able to evaluatëx as well aṡx, we could acheiveO(h3) accuracy instead ofO(h2) simply
by retaining one additional term in the truncated Taylor series:

x(t0+ h) = x(t0)+ hẋ(t0)+ h2

2
ẍ(t0)+ O(h3). (1)

Recall that the time derivativėx is given by a functionf (x(t), t). For simplicity in what follows,
we will assume that the derivative functionf does depends on time only indirectly throughx, so
that ẋ = f (x(t)). The chain rule then gives

ẍ = ∂ f

∂x
ẋ = f ′ f.

To avoid having to evaluatef ′,which would often be complicated and expensive, we can approx-
imate the second-order term just in terms off , and substitute the approximation into equation 1,
leaving us withO(h3) error. To do this, we perform another Taylor expansion, this time of the
function of f ,

f (x0+1x) = f (x0)+1x f ′(x0)+ O(1x2). (2)

We first introducëx into this expression by choosing

1x = h

2
f (x0)

so that

f (x0+ h

2
f (x0)) = f (x0)+ h

2
f (x0) f ′(x0)+ O(h2) = f (x0)+ h

2
ẍ(t0)+ O(h2),

wherex0 = x(t0). We can now multiply both sides byh (turning theO(h2) term intoO(h3)) and
rearrange, yielding

h2

2
ẍ+ O(h3) = h(f (x0+ h

2
f (x0))− f (x0).

Substituting the right hand side into equation 1 gives the update formula

x(t0+ h) = x(t0)+ h(f (x0+ h

2
f (x0)).

This formula first evaluates an Euler step, then performs a second derivative evaluation at the mid-
point of the step, using the midpoint evaluation to updatex. Hence the namemidpoint method.The
midpoint method is correct to withinO(h3), but requires two evaluations off . See figure 5 for a
pictorial view of the method.

SIGGRAPH 2001COURSENOTES B5 PHYSICALLY BASED MODELING

The Midpoint Method

a

b

c

a. Compute an Euler step

b.Evaluate f at the midpoint

c. Take a step using the
midpoint value

∆x = ∆t f (x,t)

f mid = ()f x + ∆x
2

, t + ∆t
2

x(t + ∆t) = x(t) + ∆t f mid

Figure 5: The midpoint method is a 2nd-order solution method. a) an euler step is computed, b) the
derivative is evaluated again at the step’s midpoint, and the second evaluation is used to calculate
the step. The integral curve—the actual solution—is shown as c.

We don’t have to stop with an error ofO(h3). By evaluating f a few more times, we can
eliminate higher and higher orders of derivatives. The most popular procedure for doing this is a
method called Runge-Kutta of order 4 and has an error per step ofO(h5). (The Midpoint method
could be called Runge-Kutta of order 2.) We won’t derive the fourth order Runge-Kutta method,
but the formula for computingx(t0+ h) is listed below:

k1 = h f (x0, t0)

k2 = h f (x0+ k1

2
, t0+ h

2
)

k3 = h f (x0+ k2

2
, t0+ h

2
)

k4 = h f (x0+ k3, t0+ h)

x(t0+ h) = x0+ 1

6
k1+ 1

3
k2+ 1

3
k3+ 1

6
k4.

3 Adaptive Stepsizes

Whatever the underlying method, a major problem lies in determing a good stepsize. Ideally, we
want to chooseh as large as possible—but not so large as to give us an unreasonable amount of
error, or worse still, to induce instability. If we choose a fixed stepsize, we can only proceed as
fast as the “worst” sections ofx(t) will allow. What we would like to do is to varyh as we march
forward in time. Whenever we can makeh large without incurring too much error, we should do
so. Whenh has to be reduced to avoid excessive error, we want to do that also. This is the idea of

SIGGRAPH 2001COURSENOTES B6 PHYSICALLY BASED MODELING

adaptive stepsizing: varyingh over the course of solving the ODE.
Here we’ll be present adaptive stepsizing for Euler’s method. The basic idea is as follows. Lets

assume we have a given stepsizeh, and we want to know how much we can consider changing it.
Suppose we compute two estimates forx(t0 + h). We compute an estimatexa, by taking an

Euler step of sizeh from t0 to t0+ h. We also compute an estimatexb by takingtwo Euler steps of
sizeh/2, from t0 to t0 + h. Bothxa andxb differ from the true value ofx(t0 + h) by O(h2). That
means thatxa andxb differ from each other byO(h2). As a result, we can write that a measure of
the current errore is

e= |xa − xb|
This gives us a convenient estimate to the error in taking an Euler step of sizeh.

Suppose that we are willing to have an error of as much as 10−4 per step, and that the current
error is only 10−8. Since the error goes up ash2, we can increase the stepsize to(

10−4

10−8

) 1
2

h = 100h.

Conversely, if we currently had an error of 10−3, and could only tolerate an error of 10−4, we would
have to decrease the stepsize to (

10−4

10−3

) 1
2

h ≈ .316h.

Adaptive stepsizing is a highly recommended technique.

4 Implementation

The ODEs we will want to solve may represent many things—for instance, a collection of masses
and springs, some rigid bodies, or a deformable object. We want to implement ODE solvers and the
models on which they operate in a way that isolates each from the internal details of the other. This
will make it possible to change solvers easily, and also make the solver code reusable. Fortunately,
this kind of modularity is not difficult to acheive, since all solvers can be expressed in terms of
a small, stereotyped set of operations. Presumably, the system of ODE-governed objects will be
embodied in a structure of some kind. The approach is to write type-specific code that operates on
this structure to perform the standard operations, then to implement solvers in terms of these generic
operations.

From the solver’s viewpoint, the system on which it operates is a black-box functionf (x, t).
The solver needs to be able to evaluatef , as required, at any values ofx andt , and then to install
the updatedx andt when a time step is taken. To support these operations, the object that represents
the ODE being solved must be able to handle these requests from the solver:

• Return dim(x). Sincex andẋ may be vectors, the solver must know their length, to allocate
storage, perform vector arithmetic ops, etc.

• Get/setx andt . The solver must be able to install new values at the end of a step. In addition,
a multi-step method must setx and t to intermediate values in the course of performing
derivative evaulations.

• Evaluatef at the currentx andt .

SIGGRAPH 2001COURSENOTES B7 PHYSICALLY BASED MODELING

In an object-oriented language, these operations would naturally be implemented as generic
functions that are handled in a type-specific way. In a non-object-oriented language generic func-
tions would be faked by installing pointers to type-specific functions in structure slots, or simply by
passing the function pointers as arguments to the solver. Later on we will consider in detail how
these operations are to be implemented for specific models such as particle-and-spring systems.

References

[1] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes in C.
Cambridge University Press, Cambridge, England, 1988.

SIGGRAPH 2001COURSENOTES B8 PHYSICALLY BASED MODELING

