
Affine transformations

Reading

Required:

Angel 4.6-4.10 

Further reading:

Angel, the rest of Chapter 4
Foley, et al, Chapter 5.1-5.5.
David F. Rogers and J. Alan Adams, 
Mathematical Elements for Computer 
Graphics, 2nd Ed., McGraw-Hill, New York, 
1990, Chapter 2. 

Geometric transformations

Geometric transformations will map points in one 
space to points in another: (x',y',z') = f(x,y,z).

These transformations can be very simple, such 
as scaling each coordinate, or complex, such as 
non-linear twists and bends.

We'll focus on transformations that can be 
represented easily with matrix operations.

We'll start in 2D...

Representation

We can represent a point, p = (x,y), in the plane

as a column vector 

as a row vector [ ]x y
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Representation, cont.

We can represent a 2-D transformation M by a 
matrix

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:

We will use column vectors.
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Two-dimensional 
transformations
Here's all you get with a 2 x 2 transformation 
matrix:

So:

We will develop some intimacy with the 
elements a, b, c, d…
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Identity

Suppose we choose a=d=1, b=c=0:

Gives the identity matrix:

Doesn't move the points at all
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Scaling
Suppose we set b=c=0, but let a and d take on 
any positive value:

Gives a scaling matrix:

Provides differential (non-uniform) scaling
in x and y:
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Suppose we keep b=c=0, but let either a or d go 
negative.

Examples:
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Now let's leave a=d=1 and experiment b. . . .

The matrix

gives:
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Effect on unit square

Let's see how a general 2 x 2 transformation M
affects the unit square: 
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Effect on unit square, cont.

Observe:

Origin invariant under M
M can be determined just by knowing how 
the corners (1,0) and (0,1) are mapped
a and d give x- and y-scaling
b and c give x- and y-shearing



Rotation

From our observations of the effect on the unit 
square, it should be easy to write down a matrix 
for “rotation about the origin”:

Thus,

1
0
 

→ 
 

0
1
 

→ 
 

θ
 
 = =  
  

( )M R

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

Scaling
Rotation
Reflection
Shearing

Q: What important operation does that leave out?

Homogeneous coordinates
We can loft the problem up into 3-space, adding a 
third component to every point:

Adding the third “w” component puts us in 
homogenous coordinates.

Then, transform with a 3 x 3 matrix:

. . . gives translation!   
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Affine transformations

The addition of translation to linear 
transformations gives us affine transformations.

In matrix form, 2D affine transformations always 
look like this:

2D affine transformations always have a bottom 
row of [0 0 1].

An “affine point” is a “linear point” with an added 
w-coordinate which is always 1:

Applying an affine transformation gives another 
affine point:
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Rotation about arbitrary points

1. Translate q to origin

2. Rotate

3. Translate back

Note: Transformation order is important!!

Until now, we have only considered rotation about 
the origin.

With homogeneous coordinates, you can specify 
a rotation, θ, about any point q = [qx qy 1]T with a 
matrix:

Basic 3-D transformations: 
scaling
Some of the 3-D affine transformations are just 
like the 2-D ones.  

In this case, the bottom row is always [0 0 0 1].

For example, scaling:
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Translation in 3D
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' 0 1 0
' 0 0 1
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Rotation in 3D
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Use right hand rule

Rotation now has more possibilities in 3D:

How many degrees of freedom are there in an 
arbitrary rotation?  

How else might you specify a rotation?



Shearing in 3D

Shearing is also more complicated.  Here is one 
example:

We call this a shear with respect to the x-z plane.
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Properties of affine 
transformations
Here are some useful properties of affine 
transformations:

Lines map to lines
Parallel lines remain parallel
Midpoints map to midpoints (in fact, ratios 
are always preserved)
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Affine transformations in 
OpenGL
OpenGL maintains a “modelview” matrix that holds 
the current transformation M.

The modelview matrix is applied to points (usually 
vertices of polygons) before drawing.

It is modified by commands including:

glLoadIdentity() M ← I
– set M to identity

glTranslatef(tx, ty, tz) M ← MT
– translate by (tx, ty, tz)

glRotatef(θ, x, y, z) M ← MR
– rotate by angle θ about axis (x, y, z)

glScalef(sx, sy, sz) M ← MS
– scale by (sx, sy, sz)

Note that OpenGL adds transformations by  
postmultiplication of the modelview matrix.

Summary

What to take away from this lecture:

All the names in boldface.
How points and transformations are 
represented.
What all the elements of a 2 x 2 
transformation matrix do and how these 
generalize to 3 x 3 transformations.
What homogeneous coordinates are and 
how they work for affine transformations.
How to concatenate transformations.
The mathematical properties of affine 
transformations. 


