
Ray Tracer

Spring 2005 Help Session

Outline

• Project Web Resources
• Ray Class
• Isect Class
• Requirements
• Tricks
• Artifact Requirement
• Bells and Whistles

Project Web Page

• Description of sample scenes
• Roadmap

– Overview of files
– STL Information
– List of useful equations

• File format description
• Debugging display documentation
• Triangle intersection handout

ray Class

• ray r (start position, direction, RayType)
enum RayType{VISIBILITY, REFLECTION,

REFRACTION, SHADOW};

• r.at(t), a method that determines the
position of the ray r as a function of t, the
distance from the start position.

isect Class

• An isect represents the location where a
ray intersects a specific object.

• Important member variables:
const SceneObject *obj; // the object that was intersected.
double t; // the distance along the ray where it occurred.
Vec3d N; // the normal to the surface where it occurred
Vec2d uvCoordinates; // texture coordinates on the surface. [1.0,1.0]
Material *material; // non-NULL if exists a unique material for this intersect.

const Material &getMaterial() const; // return the material to use

Requirements

Sphere Intersection
Fill in Sphere::intersectLocal in Sphere.cpp:
Return true if ray r intersects the canonical sphere

(sphere centered at the origin with radius 1.0) in
positive time.

Set the values of isect i:
• i.obj = this
• i.setT(time of intersection)
• i.setN(normal at intersection).

Requirements

Triangle Intersection
Fill in TrimeshFace::intersectLocal in trimesh.cpp:
Intersect r with the triangle abc:

Vec3d &a = parent->vertices[ids [0]];
Vec3d &b = parent->vertices[ids [1]];
Vec3d &c = parent->vertices[ids [2]];

Set isect i and return true if ray r intersects the plane
containing triangle abc and the intersection is within the
triangle.

See handout linked from project page

Requirements

Phong specular-reflection model
Fill in Material::shade in material.cpp:
Refer to slide 20 of the shading lecture.
To sum over the light sources, use an iterator as

described in the comments of the code.

Requirements

Contribution from multiple light sources
Fill in PointLight::distanceAttenuation in light.cpp

(DirectionalLight::distanceAttenuation is already
done for you). Use the alternative described in
slide 19 of the shading lecture where

a = constantTerm
b = linearTerm
c = quadraticTerm

in light.h.

Requirements

Shadow Attenuation
Fill in DirectionalLight::shadowAttenuation and

PointLight::shadowAttenuation in light.cpp.
Take into account shadow attenuation in the f_atten term in the Phong

model as suggested in the ray-tracing lecture.
Rather than simply setting the attenuation to 0 if an object blocks the

light, accumulate the product of k_t’s for objects which block the light
(use the prod function from the vector package).

See Foley, et. al. Section 16.12 in course reader – this particular
method is not really covered in lecture slides

Better ways to handle shadows (caustics, global illumination, etc.) get
extra credit

Requirements

Reflection
Modify RayTracer::traceRay in RayTracer.cpp to

implement recursive ray tracing which takes into
account reflected rays.

See Foley, et. al. in course reader and lecture
slides.

Requirements

Refraction
Modify RayTracer::traceRay in RayTracer.cpp to

implement recursive ray tracing which takes into
account refracted rays.

Remember Snell’s law and watch our for total
internal refraction.

nglass=1.5
1θ

2θ

2θ

1θ

nair=1.00029

Tricks

• Use the sign of the dot product
r.getDirection() with i.N to determine
whether you’re entering or exiting an
object

• Use RAY_EPSILON to account for
computer precision error when checking
for intersections

RAY_EPSILON

Artifact Requirements

• One (or two) JPEG images traced with your Ray
Tracer per group submitted for voting.

• Has to be a (somewhat) original scene
• For each image submitted for voting, a short .txt

description of the scene or special features.
• Examples of each bell/whistle implemented with

an accompanying readme.txt specifying which
image demonstrates which feature (and
where/how).

Bells and Whistles
• Antialiasing – A must for nice scenes (to render scenes

without “jaggies”)
• Interpolate trimesh material properties – will make them

look nicer
• Environment/Texture/Bump Mapping – Relatively easy

ways to create complex, compelling scenes
• Single Image Random Dot Stereograms – I have no

idea, but they look cool!
• Depth of field, Soft shadows, Motion blur, Glossy

reflection – most images we’re used to have at least one
of these effects

3D and 4D Fractals

http://www.cs.washington.edu/education/courses/cse457/04sp/projects/trace/vote/omicron-tortman/omicron-tortman2.txt

Constructive Solid Geometry
• Allows for complex objects while still just intersecting simple primitives

	Ray Tracer
	Outline
	Project Web Page
	ray Class
	isect Class
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Tricks
	Artifact Requirements
	Bells and Whistles
	3D and 4D Fractals
	Constructive Solid Geometry

